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PREFACE

This book developed from a set of notes which I prepared in 1045,
At that time there was no modern text availuble specifically designed
for beginning students of mathematical statistics, Since then the
situation has been relieved considerably, and had I known in advaites
what books were in the making it is likely that I should not have
embarked on this volume, However, it seemed sufficientlydifferent,
from other presentations to give prospective teachers and\stldents a
uscful alternative choice. ‘ R

The afore-moentioned notes were used as text materidl for three years
at Towa State College in a course offercd to senjer and first-year
graduate students.  The only prerequisite for the eourse was one vear
of caleulus, and this requirement indicates the féyol of the book.  (The
calculus class at Towa State met four hours¥er weck and included good
coverage of Taylor series, partial differcnfidtion, and multiple integra-
tion,) No previous knowledge of staﬁéﬁcs 18 gssumed,

This is a statisties book, not a @tthematics book, as any mathe-
matician will readily sce. Little 4 thematical rigor is to be found in
the derivations simply becausd # would be boring and largely a waste
of time at this level. Of QQTH\'BF: rigorous thinking is quite essential to
good statisties, and T ha¥e'been at some pains to make a show of rigor
and to instill an appreciation for rigor by pointing out various pitfalis
of loose arguments, ;.

While this textys/primarily concerned with the theory of statistics,
full cognizanc§Wias been taken of those students who fear that a
moment m,a‘?xhﬁé wasted in mathematical frivolity. All new subjocts
are suppliéd with a little scenery from practical affairs, and, more
importju,l\t, a serious cfforl has been made in the problems to illustrate
the %rict-y of ways in which the theory may he apphed.

The problems are an essential part of the book. T hey range from
gimple numerieal examples Lo theorems needed in subsequent chapters.
They include important subjects which could easily take procedence
over material in the text; the relegation of subjocts to problems was
based rather on the feasibility of such a procedure than on the priority
of the subject, Tor example, the matter of correlation is dealt with
almost entircly in the problems. It secmed to me incfficient to cover
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PREFACE

multivariate situations twice in detail, i.e., with the regression morel
and with the corrclation model. The emphasis in the text Proper Is on
the more general regression model.

The author of a textbook is indebted to practically everyone whe
has touched the field, and I here bow to all statisticians, However, in
giving eredit to contributors one must draw the line somewhere, and |
have simplificd matters by drawing it very high; only the most emineni
coniributers are mentioned in the book.

My greatest personal debt is to 8. 8. Wilks, who kindled my 4p4 e,
in statistics and who was my mentor throughout my term u'l'. racia e
study. Any merits which this book may have must be chaadeMorgel s
to his careful lectures und understanding dircetion of myystdies.

My colleagues at Towa State College have all conj,fi‘l’)'fxtcd much to
my understanding and geners! view of statistics.ﬂ'\l am purticularly
aware of large debts to G. W, Brown, W. Ge€dchran, and ¢}, v
Snedecor. Among the many students “-'ho\thomngh]y revised the
original notes by their excellent comments afdsuggestions [ must men-
tion H. D. Block, who gave the final mimuseript very cureful ad
competent review, Margaret Kimiizi:a'nd Ruth Burns aceuratel ¥
fraoslated my serawl into beautifultypeseript. Bernice Brown and
Miss Burns carefully proofread jhe: entire set, of galleys.

I am indebted to Ca-therine;’fl‘hompson and Maxine Merrington,
and to K, 8. Pearson, editgnof Biometrika, for permission to include
Tables IIT and Vv, Whicl{ra;\-e abridged vorsions of tables published in
Biometrika. Tam alsgﬁir’rdebted to Professors R. A. ¥ishor and Frank
Yates, and to Messps, Oliver and Boyd, Ltd., Edin burgh, for permission
to reprint Tablg\’IV from their book “Statistical Tables for Use in
Biological, Agrichltural and Medical Research.”

In the fingl chapter are some distribution-free tests which were
develf)pg jointly by G. W. Brown and myself at Towa Stato College on
a proqef;{s sponsored by the Office of Nava) Research. Professor Brown
hassvrery generously and graciously permitted me to include this mate-

%\hﬁ-'hich should have first appeared in print under hjg name as well as
are presented in Sectjong 5,6,7,8, and 9 of

mine. The tesig referred tg
Chapter 16.

ALEXSAXDER McFa NE M
Santa Montca, Calif, RLANE Moop

January, 1050
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CHAPTTR 1
INTRODUCTION

1.1. Statistics. In order to place this book in its proper perspeotlvq
it is necessary to consider first what statistics is. The lay (*onceptl(m
of statistics ordinarily includes the collection of far ge masses,&f )ata
and the presentation of such data in tables or charts; it (hay also
include the calenlation of totals, averages, percentages, ,and “the like.
In any case this conception is about thirty years out “of date; these
more or less routine operations ure only an mcldgntal}qa,lt of statistics
today.

We shall describe statistics as the technology gfithe scientific method.
Statistics provides tools and techniques for i\semch workers. These
tools may be of quite general appllcamon ahd useful in any field of
seience—physical, biologleal, or aocml “On the other hand certain
tools may be particularly designed fcar spemal fields of research.

We shall not embark on a dl‘iclle:.lOD of the scientilic method here,
but we may reeall its three main %pects (1) the performance of cxperi-
ments, (2) the drawing of obj éeive conclusions from experiments, sand
(3} the construction of lap§ $6 simplify the deseription of the conclu-
sions of large classes of (‘N}vrlments Statistics 18 primarily concerncd
with the first two of these agpeets; in fact, the fleld of statistics is com-
monly thought of hgdbeing div ]de into the two areas corresponding o
these two aspect.é\(l) the design of experiments and investigations, (2)
statistical infdrénce. We shall eontinue our deseription of statisties
by dizcussinghthese areas bricfly in the following ftwo sections.

1.2, The Design of Experiments and Investigations. An expori-
meptNg meant to study the effect of variation of certain factors or the
1914}}{)11 between certain fuctors. Thus one may wish to study the
relation between temperature und pressure in a fixed volume of a gas.
Or one may wish to discover what if any cffect on milk produection
results from altering the proportion of roughage in a cow's diet.
Again one may wish Lo study the effeet on the retail price of a certain
commodity when a given public policy regarding the commodity is
promulgated,

In the iypical experiment the research worker is harassed by addi-

1




§1 D) INTRODUCTION

tional factors which influence the outcome of the experiment. fie(irs
which he would like to eliminate but cannot control ('nm]}"('li’f_\'.
These extrancous factors are least important in the physical Seltnees,
where the cxperimenter has good control over his experimoen
material. They are quite important in the biclogical sciences, \\'}ul-:-n
the geneticist must deal with animals each ha\'in.g its own pq-:‘uh_ur-
genetic inheritance, the plant breeder must deal with whatever Virie-
ties happen to be availablo, do hig experiments in whatever soil is -
hand and in whatever weather conditions may oceur.  The extrgmeons
factors hecome most troublesome in the social sciences, whiowd 1hie
research worker frequently has no control at ail over his exphefnien il
material.  Studies in these seiences are often mmvestigthons ruibor
than experiments, N

Statistics is concerned with these extraneous fac€®r8—ith desion
ing the experiment so as to eliminate them if passible or to nininize
their eflects, with arranging the experiment i) space or time so 1l
the effects may be expected to eancel or parbiaily cancel Ehemsolyys,
with designing the experiment so that tha(ffects may be renvoved or
partially removed in the analysis of thdf'(:sulting data.  The design
may be nothing more than an obvious“application of COMMOn =enx:
Thus suppose batches of the saiie material from several difTerent.
sources are to be analyzed in Order to determine whether they e
sufficiently alike to be treatod*the same WAY i some manufued uring
process. A number of spévitens chosen at random from cach buiel
are to be analyzed; twolmien are to do the individual analvses, 11 s
plain that the speci;n\ms from each batch shoyld be divided equally
between the twq ABalysts, clse variations due to differences in the
analysts’ techgiqteés will appear in the final results as differences
between  batgies, Experimental designs range from such  trivial

devi.ces a.K'tl’ri% to highly elaborate arrangements based on the mithe-
matical gheory of finite Zeometries,

. In \;jgsigning investigations, the problem ig normally one of balane-
}%ﬂ?ﬁtrageous factors by selectin g representative samples, Thuys sy p-
bose a.pohtical barty, in order to Judge how actively it should campaign
In & given s’t-ate, employs 5 public-opinion-poﬂing ageney to estimate
the proportions of voters in the state who intend to vote fop its candi-
_date 'zf-nd’ the rival candidate. The polling agency will do this by

1 : . - Itisclear that the factor
in which _the agency j . ; 1ong of voters favoring the
_t-wo E?nd{dgtes) will be widel 3 great many other fuctors
W which 1 is not, diye xample, farmers ag 5 group

¥ influenced by
ctly interested. Fore
2 .
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and laborers as a group may feel quite differently about the candi-
dates. The ageney must control this factor by making the proportions
of people in various oceupational groups in the sample equal to those
proportions in the state. Tt should make the proportions of people in
various racial groups in the sample equal those for ithe state. The
proportions of pcople at different economic levels should be the same.
"The proportions of people In different geographical areas should be the
same. And soon, The sample should, in short, be as representative
as possible of the population of the state.  The statistician ig concerned
with ways of seleeting such samples or, if this is impossible or imprac-
ticable, with ways of assessing the m‘lgmtudas of the cffects of such
extraneous factors and removing them in the final analys’ $0f the
results, \.
1.3. Statistical Inference. New knowledge in suefnt}c is usually
found by a logically hazardous process—the proegey bl generalizing
from particular results. The scientist, on pereeipiig®a certain paitern

_in the results of one or more exper:lmcnts conkbtures that the pattern

may be characteristic of a large class of pessible experiments. The
conjecture or hypothesis would 01d1nar11y\be tesied by performing
other experiments; it might be further Suppor‘red or it might be dis-
proved. The latter outcome is byo e means infrequent, for gen-
eralization or inductive thmkmg, 15 Well known to lead to uncertain
conclugions. ™

The broad problem of stahstlcal inference is to provide measures of
the uncertainty of conclusmns drawn from experimental data. This

‘problem ig attacked means of the theory of probability, which

forms the foundatiomo he theory of statistical inference. The tools
of statistical mference enable the scientist to assess the reliability of
hiz conelusions m terms of probability statements. To consider a
simaple exampl& Suppose & chemist has made three precise determina-
tionsg of t\e\atomlc weight of chlorine, and suppose his results arc
35.4563, 30 4578, 354575, He might conclude, for example, that the
truc atomic weight is between 35.456 and 35.458. Tt is the function
ofstatistical inforence to tell the chemist o what extent he may rely
on this conclusion. The measure of reliability might be given by &

statement of this form: “The odds are two to one that the conclusion
i3 correct.” If it is important that the chemist ostimate the atomic
weight within .002, he will likely be dissatisfied with such low odds
and will make further determinations in order to decrcase his chances
of being wrong. He might, for example, feel that for his purposes he
must be very confldent of his conclusion and repeat his determinations

3 .



§1.4 INTRODUCTION

until there is only one chance in a hundred of hjs final eonelusion bieing
in error. o

It 18 usually impossible to make an entirely valid generalizai lon
arrive at a certain conelusion on the basts of experimental evidenee
But it is possible to measure the uncertainty of such conclusions in
probability terms and thus resolve to 4 considerable degree w very
troublesome problem faced by every seiontist.

The scope of statistical inferenco is as broad as experimentgion
itself. An experiment may be intended mervely fo evilunte o com=tant,
ag in the illustration just given, or it may he meant (o evalia W -
eters in a function, or perhaps to estimate 4 function Uy st of
functions. An experiment may be designed to tost o {-zqii\:Lin hapotlie-
sis suggested hy a tentative theory——the ]1}’})(J[flf’.\li(w'"[:’i’l.'ll Fwe faedops
are unrelated, that a relation has o specilied i'n,rlz'timml Form. "Ihe
experilnenter may have to contend with t'el;lti,\"tgﬁ' suull elfeets from
extrancous factors, as in the physicul seielled, or with quite Lirae
ones, as in the social seicnces, In any casevhe problem of siqi =il
inference arises. If an experiment indicates that o certain hypothzis
is false, the hypothesis may nevertheless'remain tenale 0 the experi-
menter's mind if that conelusion ys“not supported by heavy o s,
The certainty of a conclusion ig®ften as important s the conelusion
itgelf in the final evaluation of'an experiment.

1.4, The Theory and Practice of Statistics, Another divigion of 110
field of statistics worth l{l‘ief consideration i that between the theory
and the met-hodology, O

The theory of stutigtios is a branch of applicd mathematios, It has
its roots in an ardaef pure mathematies known as the theory of proh-
ability, and infact the complete structure of stutistical theory o
broad sensyday bhe thought of ag including the theory of probabili v,
And it inthitles other things not part of the formal theory of proh-
ability#fheoretioal consequences of the brinciple of randomization.
Various principles of estimation, and principles of testing hypotheses,
~Lhepe principles may be regarded as axioms which ay gment the axioms

Sof probability theory, ‘

The statistician is, of course, engaged in producing tools for research
workers. Faced with g particular experimenty] problem, he const ruets
& mathematical mode] to fit the experimental situgtioy as best he can,
analyzes the model by mathematicy] methods, and finally devises
brocedures for dealing with the problem, He ig guided in this work
by the principles of the theory of statisties,

The statistician js also engaged in developing and extending the
4



THE THEORY AND PRACTICE OF STATISTICSR §14

experimental design and statistical inference which remuin untouched
because the theory of statistics is not yet powerful enough to deal with
them. The broad advance in the application of statistical methods
during the past two decades was made possible by far-reaching develop-
ments in the theory which immediately preceded it.

It may be interesting to remark here on the origins of the theory of
statistics.  Certain areas of biologieal experimentation resched a point
where what arc now ecalled statistical methods wore imperative'if
further progress was to be mado. The essentialy of statistical thenpy
were then evolved by the biologists themselves. This parallélhthe
natural history of almost any branch of abstract knowledgc,\:blm it
nevertheless curious in the case of stalistics. For the thegry of sia-
tistics appears 1o be a very natural development of the théory of probe-
ability, which is several hundred years old; somchoix 1t was almost
complelely overlooked by workers in that field Ihciden'ta,ﬂy the
situstion which created statistical theory still olftgins: there are nany
areas of selentific expevimentation ready al}q Graiting for statistieal
methods which do not yet exist. A\ )

In contradistinetion to the theory of Statistics is the practice of
statigtics. There is a great body of tedls and techniques for rosearch
workers which expands appreciablﬁ \With the passing of each vear,
Until recent years the statisticiangwas not much concerned with thege
tools, being content to pass théDr on fo those who wished 1o use them.
But as seientific research progresses cxperiments become more complex
and the statistical toals Beronme correspondingly complex and special-
ized.  In some areas ghe timo has come when it is impossible for the
rescarch worker tgwhééome familiar with all the tools that might be
useful to him, Furthermore, as tools become more specialized, they
become less e€ible; to fit o particular experiment the tool often has to
be modified{ditd this requires knowledge of statistical theory.,

The us¢®f statistical tools is not merely a matter of picking out the
\-vrenc:hjthat fits the bolt; it iz more a matter of seleeting the corroct
one Of gseveral wrenches which appear to fit the bolt ahout equally well
but none of which fit it exactly. It is s long step from an algebraie
formula to, for example, a nutrition experiment on hogs. There is
nothing magie about the formula; it is merely a tool, and moreover g
tool derived from some simple mathematical model which cannot
possibly represent the actual situation with any great precision. In
using the tool one must make a whole series of judgments relative to the

nature and magnitnde of the various errors engendered by the dis-
5

theory of statistics. There are many quite important problems of‘
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crepancics between the model and the actual experiment., iligse
judgments cannot well be made by either the statistician or the expori-
menter, for they depend both on the nature of statisticu] theors and
the nature of the cxperimental material.

To meet this development, the applied statistician Lius come o the
scene. He is to be found in various industrial and neademic resseareh
centers, and his function is, of course, to colluborate with il researeh
workers in their experimentation and investigntion. Ie musl be
completely familiar with both the theory and methodologd bt =ta-
tisties even though his work is concerned not with the fi('.]fl\h{ sbadislics
ab all but with the field of application. We merely wish ¥ oleerve
here that applied statistics has developed to the pointughere it may be
regarded as a fleld of interest in itsclf. )

1.5. The Scope of This Book., This book & eoncerned with 1he
theory rather than the applications of statisti¢s,” In the course of i he
development many tools will be derived’ alde diseussed; o secalidary
purpose of the book is to make clear the eopditions under which cortain
of the important statistical tools mag<be employed.  But our pritry
burpose is the exposition of statistical theory.

The book is introductory in that no knowledge of statistics by ihe
reader is presumed. And it;i's"elementary in that no knowledue of
mathematics beyond elementary calculus is presumed,  This resrice-
tion of the mathematicallovel is necessarily costly. We shall have to
omit entirely many'igm}.msting but more technical developments of
the theory; the genelality of theorems will he reduced; it will be neees-
sary to make statements without proof from time to time; mathent-
16:511 rigor will\i@sacrificed at many points; and cumbersome ArgUnIen T
will sometin{es’ have to be used when very simple arguments at 1 highor
mathematieal level exist, Ajl these sacrifices, however, will inhibit
Our presentation rather less than one might suppose, The cssential

aspents 01’: the theory are entirely comprehensible without higher
Jathematics, :

) Since statistical theory is founded on probability theory, we shall

" “hegin the study with g consideration of probability concepts and 1he
development of certain probability theorems which will be roquired.
Next we shall eonsider mathematical models which have heen found hy
;’;‘pep?nce to ap.progimate many commmon experimental situati(m;,
st-ag;};irgll?ﬂf:;:nggsilﬁc fti?h St;; dy mathemaf,i{,auy the preblems of
investigations, o the design and analysis of experiments wnd

8
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1.6. Reference System. The chapters are divided into numbered
sections; the numbering beging anew in each chapter. In referring
to a section contained in the same chapter as the reference, only the
section number is given. In referring to a scetion in a difforent chap-
ter, the chapter number is prefixed to the section number and separated
from it by a period. Thus Sec. 5.3 refers to Sec. 3 of Chap. 5,

The equations are numbered anew in each section, and ecquation
numbcers are always enclosed in parentheses. Merely the cquation
number is given when referring to an equation in the same suction:a,\s
the reference; otherwise the section number is prefived. Thus edqus-
tion (4.6) refers to the sixth equation of the fourth section of thé jame
chapter as the reference, and cquation {9.1.12) refers to t-h\é"}‘}w‘élft-h

equation of the first section of the ninth chapter. \
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CHAPTER 2
PROBABILITY AND COMBINATORIAL METHODS

2.1, Definition of Probability., Probability is 2 mewsure of Uy {ileli-
fiood of occurrence of g chance event. A precise definitionagn be
given in many ways, but for owr immediate purposes, the fwMoing
statement, known as the classical definition of probabilit v S 1T

1f an event can occur in N mutually exclusive and cquadfy Vi ly wa i,
and if n of these outcomes have an aitribute A, then th (pJEigf;c:(:f'{s'!_a; af vy
the fraction n/N, A
We shall apply this definition to » fow simpl(;"ﬁx:\unplva inoarder io
illustrate its meaning. !

If an ordinary die (one of a pair of dice)slsdossed, there are sis Jr0se
sible outcomes: any one of the six numberedfaces may turm, up. These
8ix outcomes gre mutually exclusive! site two or more fuees canmot
turn up stmultaneously, And, sqpﬁﬁsing the dic to be fuir or feae,
the six outcomes are equally likely’; no one face is any maore 10 bo
expected than another, Now{suppose we want the probuabilify ¢t
the result of a fosg be an &ven number. Three of the six po==ibile
outcomes have that attribyte. The Probability that an even nunihier
will appear when o die(3$ tossed is therefore 3¢ op 14, Similarly. the
Probability thut 5 five will appear when a die is tossed is 1§ The
probability that the result of 5 toss will be greater th 2
2 To consideransther example, suppose 3 card is dr

an two ix 27
. 4 awn af randon
from an ordin

ordmary deck of Playing cards, The probability of drawing
a spade W Teadily seen to be 1340 0r 14, The probability of drawing
a num}g&r between five and ten inchisive ig 22450 or 81, )
_ ’}‘I;g.npplicat-ic)n of the definition is straightforward enough in these
gyf@lﬁl cases, but it ig not always so obvious. Carefy] attention mist.
\b‘e; paid to the qualifications “mutually exclusive’ and “equally
Iikely » Suppose one wished tg compute the probability of g(‘.ftin:f
two heads if g eoip were tossed twice. Hp might reason that tllf‘T';
were three possible outcomes for the two {osses: two heads, two tui-ls
LI one head and ope tail. One of these outeomes has t’he desirc&
soning is faylty
n outeomessare not equally likely. The third
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outeome can oceur in two ways since the head may appear on the first
toss and the tail on the seeond, or the head may appear on the second
toss and the tail on the first, Thus there are four equally likely out-
comes: HH, HT', TH, T'I. The first of these has the desired attribute
while the others do not. The correct probability is thercfore 14.
The result would be the same if 1wo coins were tossed simultaneously.

Again suppose one wished to compute the probability that a eard
drawn from an ordinary deck will be an ace or a spade. In enumcrat-
ing the favorable outcomes he might count 4 aces and 13 spades, and
reason that there are 17 possible outcomes with the desirved attribie
This s cleatly incorrect because ihe events are not mutually exclus,iix--e.
The occurrence of an ace does not preclude the occurrence ofd Spade.

We note that a probability is always a number betwecen zerardand one,
The ratio n/N must be a proper fraction since the total Dumber of
possible outcomes cannot be smaller than the number d¢f utcomes with
a specificd attribute. If an event is cortain to hapPen, its probability
is one; while if it is cortain not to happen, itg probability is zero.
Thus, the probability of ebtaining an eight #ossing a die is zero.
The probability that the outeome of tossing ’a\die will be less than ten
is one. O

The probabilities determined by thedelassical definition are called
a priori probabilitics. When one stabes that the probability of obhtain-
ing a head in tossing a coin is adeshalf, he has arrived at this result
purely by deductive reasoningss The result does not recuiire that any
coin he tossed, or even be apfianid.  We say that if the coin ig true, the
probability of a head istdn&chalf, but this is little more than saying
the same thing in twoldifferent ways. N olthing iz said about how one
can determine whetligror not a particular coin is true.

The fact that, we shall deal with ideal objects in developing the
theory of proba.mty will not trouble us, because that iz & common
I’equil‘emcng.(\{ﬁma-t-hcmatica.l systems.  Geometry, for cxample, deals
with concepbual perfect circles, lines with zero width, and so forth, but
it is a @iseful branch of knowledge which can be applied to diverse
pradical problems,

There are some rather troublesome defects in the classical, or a priori
approach. Tt is obvious, for example, that the definition of probability
must be modified somehow when the total number of possible outcomes
is infinite. . Onc might seck, for example, the probability that a posi-
ttve integer drawn at random be even. The intuitive answor to this
question is 14. If one were pressed to justify this result on the basis
of the definition, he might reason as follows: Suppose we limif our-

9
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selves to the first 20 integers; 10 of these are cven S0 that the ratio of
favorabla events to the fotal number 35 1960 or 4. Agnin, I the first
200 integers are considered, 100 of these are even, and the rafio ix ulso
Y4, In general, the first 9N infegers contain N even infegoers: il we
form the ratio N/2N and let N become infinite so as Lo encoinpiles the
whole seb of positive integers, the ratio remains 1§

The above argument is plausible and the answer i plausible, bt it s
no simple matter to make the argument stand up. Lt depends, for
exaraple, on the natural ordering of the positive integers, and o differ-
ent ordering could produce a different vesult. Thug, one conki just
as well order the integers in this way: 1,3, 2; 5,7, 4; 4. [P M
tuking the first pair of odd integers, then the firsl eveyhitae: the
socond pair of odd integers, then the second cven intemdys i ~o Torth,
With this ardering, one could argue that the pr::)h:}li’ifiiy of drsving am
oven integer iz 14.  The integers can also be or,de}ﬁi so it the ridio
n/N will oscillate back and forth and nevempproach any dehinite
value ag & increases. N

There is another difficulty with the n;luj\s’ical approach to the theory
of probability which is decper even gt that arising in the cuse of an
infinite number of cutcomes. Sugpose we have a voin known to be
biased in favor of heads (it is Joaded so that a head is more likely to
appear than a tail). The two possible outcomes of tossing the comn
are not equally likely. What is the probability of a head? The cluss-
ical definition leaves ys pompletely helpless here.

.ID a situation lik%\?‘m above we shall simply assume that there does
exist some definibe though unknown number which gives the desired
probability, ~{iﬂd we shall assume that the number obeys the =mne
1aws: as the r?babilities arising from the classical definition.

u We h@V@‘pomted out these difﬁcult.i.es me.rely 1o indicate the hnita-
HONE@NIUT approach. A complete discussion of these points belongs
propetly in a textbook on the theory of probability. There are olher

ethods of defining probabilities which are logically more satisfactory

than the one we h'ave chosen, but ours has the advantage of simplicity.
And as ye.t_there 18 no general agreement, among writers on the theory
of probability as to what is the most satisfactory set of axtoms for fhle
theory. .

2.2, P‘e?mutations and Combinations. "The evaluation of a priori
p}‘?b&bﬂltl&g requires the enumeration of all possible outcomes of &
%1\- on chla-nce evt?nt-. ’.I‘his sort of enumeration can often be facilitated

y cerbain combinatorial formulas whick will be developed now. The
are based on the following two bagie principles: ‘ !
10
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(a} If an event A can occur in o iotal of m woys and if a different
event B can occur in n ways, then the event 4 or B can occur in m + n
ways provided A and B cannol occur simultaneously,

(b} If an event A ean occur tn o total of m ways and if o different event
B can oceur in n woys, then the event A and B can oceur in-mn ways.

These two ideas may be illustrated by letting 4 correspond to the
drawing of a spade from a deck of cards and B correspond to the draw-
ing of a heart. Iach of these events can be done in 13 ways. The
number of ways in which a heart or a4 spade can be drawn is obviously
13 + 13 = 26. To illustrate the sccond prineiple, supposc two cdrds
are drawn from the deck in such a way that onc is a spade and thu.gther
1# & heart,  There are 13 X 13 = 169 ways of doing this, d1ce Swith
the ace of spades we may put any one of the [3 hearts, or z\-»ai’ﬁh the king
of spades we may put any vne of the 13 hearts, and gdon’ for all 13
of the spades. i \\

The two principles may clearly be generalized\bd take account of
more than two events. Thus, it three mutugdly/esclusive events 4
B, and €' can oceur in m, n, and p ways, respéetively, then the event 4
or B or € can oceur in m 4 n + p ways, antbthe event 4 and B and €
CAll OCOUr I MAP WAYS. o\ o

We shall now use the second of t-ﬁ’esé prineiples to enumerate the
number of arrangements of & set gfobjects. Let us consider the num-
ber of arrangements of the Ietterd'a, b, ¢. We can pick any one of the
three to place in the first position; either of the remaining two may be
put in the second posit-iom{"aﬁd the third position must be filled by the
unused letler. The ﬁl‘li}\g of the first position ig an cvent which can
oeeur in three waysythe filling of the sccond position is an event which
ean oceur in two ways, and the third event can occur in one way, The
three events p@ij}bccur together in 3 X 2 X 1 =6 ways. The six
arrangemcn@ o1 permutations, as they are called, are

..\': N abe, ach, bac, ben, cab, cha
Tn ‘this gimple example the claborate method of counting was hardly
worth while because it is easy enough to write down all the six permu-
tations. DPut if we had asked for the number of permutations of six
letters, we should have had

- BXBEX4E4XIX2IXL="T720

permutations to write down,
It is obvious now that in general the number of permutations of n
11
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different objects is

RS a{n — 1)n — 2)(n ~3) - - - (2} ()

The row of dots indicates omission of intermediate factors.  This
product of an integer by all the positive integers smaller tha i, is
usually denoted more briefly by ! (read n factorial).  Thus 2! — 2,
31 =6, 41 = 24, 5! = 120, ete. Sinece

1l
(n — = =
T N
it is common to define 0! us one, so that the relation will he st cot
R
when n = 1, A

Let us now enumerate the number of permutatiopdthut muy he
made from » objects if ouly r of the objects are w@d in NNy e pn
permutation. Reasoning as before, the firgt positidn nuy be filledd in
7 Ways, the second position may be filled in 5.\ ways, antd so forh,

When we come to the rth position, we wilkkhve used r — | of ihe

objects so that n — (r — 1) will remain £80m which we eun oluose,

The number of permutations of n objeqtsfté’ken Fat oo time s herefore

nn — 1}n —2) - . - (r — 7+ 1). NMhe svmbol 2, s used 1o
denote this number. N

™\ el .

Pﬂ,r-—n(n—l)(n —2)» T (n—r+1) =(Ta_:';_-)-! il

Thus the number of permuftations of the four letters a, b, e, o taken 1w
at a time is P,, = 4)(:3 =12, On putting » = 5 in cquation {1,
we geb the result stéted earlier: that the number of permutations of H
objects taken n at™g time iz n!,

With the aid 6P g¢quation (1) we can now solve the following problemn :
In how man ‘different Ways can r objects be selected from n objecis?
P, countsll the possible selections as well as all the arrangements of
each S"}e\ 10N or combinaiion, Two combinations are diiferent, if they
are not™made up of the same set of objects. Thus ghe and alut are
’g\iff"sfent three-letter combinations, while ghe and bac are different

) .
\)ermut-atmns of the same combination. Let the symbol (ﬂ') denote
»

the number of different combinati ons.  Then it is cleay that P,

-+ equals
ny .. y o L
» ] t1mes r!, sinece each combination of » objects has »! arrangements,

Therefore

Yo B _2la =~ Nn—29) ..., _ .
(?‘) T = _______J__‘T]_‘—-—-@'-——-?__i—_}_) = n! (2)

__?'In—-r_!
1% ( )
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Another common symbol for this number is Ca.», but we shall not use
it in this text. The number of combinations of five objects taken three
at & time is

5)ﬁ5><4><3 60
Tt 6

5 = =10
The number (n) may be given a different interpretation. It is the

number of ways in which » objects may be divided into two gr oups, one
group containing r objects, and the other group containing the oifer
n — r objeets. Now suppose we wish to divido » objeets into. three
- groups containing ni, ne, ns objeets, respoctively, with R\,

M+ ng + Hz = n
We shall first divide them into two groups cont-a.iningéi‘l and ne 4+ n;

N

2%
S

objcctes". Thig may be done in (;?) ways. Thén e may divide the
1

 §

second group into two groups containing 7, a*\nd‘«u,s objects. This may

be done in (m : m) ways. Using the febond priaciple of enumera-

z
tion, the fotal number of ways of doidgithe two divisions together is

n Y fns + ns) _ n! (e + ng)! n!
i g ﬂl’{nz + ng)l nalng! n1lnelng!

This type of argument ma,)}oe carried further to find the number of

ways of dividing n och\@s into % groups confaining ni, na, - - - , %z
objects with n, + ﬂz # ¢ - 4+ ny =n. This number is readily
found to be P\
.o\‘. n}
\:..\;. P (3}

O\
Thus the number of ways of dividing four objeets into three groups
(ontammg 1, 1, and 2 ohjects is

AV, 41
11112t .

The expression (3) also has a second interpretation. It is the num-
ber of different permutations of n objects when », of the objects are
alike und of one kind, ». are alike and of a second kind, and so forth.
Referring to the numerical example above, there are 12 permutations
of the letters g, b, ¢, c. In order to see that expression (3) gives the

correct number, consider n different objects (for example, the letters
13

= 12
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a,b,c, - v+, p)arranged in a definite order,  And consider a division
of this set of objects into & groups, the first group containing », objects,
the second 7, and so forth. Now in the original arrangement of
objects, replace all the objects selected for the lirst group by ones, all
those selected for the second group by twos, and so forth,  “Phe result
will be a permutation of n; oncs, 5, twos, -+« ome B A liitle
reflection will convince one that every division of the letters inlo {he k
groups corresponds to a different permutation of the integers, anel Hat
this ig the total set of permutations, because i there woere ot her,
there would be another division of the letiers info / Eroups.

We have derived three formulas in this section, notgomly Dheenuse
they are uscful but because their derivation ser\'z‘.r:j.b:\i]]ust;-:m- ihe
application of the two principles of enumeration givemiut the bouinning
of the section. Tt is the methods that arc importdnit. The forn s
will aid in selving many problems, but they are“t%v.]nsx in many others,
and one must then fall back on the elementiny principles.

Hustrative example: Tf two cards are 'dljs}v‘n from an ordinars deck,
what is the probability that one will bea spade and the other 1 heart?

Since nothing is said about the ordéntn which the spade and the heart
should occur, this is a problemyin. combinations. 1o compuic the
probability, we must find the fotal number of possible outcomes of
two-card draws, and then {iod the number of these that have the
specified attribute. Thtf,.i;fﬂ.'ﬁl number of two-card combinations {hat
can be made up from™$2 cards is (522) = 1326. And we have scen

before that there,zhélS X 13 = 189 different combinations with the
required attribybel The probability is therefore 189405 = 13{ga.
This pro})lgﬁl could also be solved by regarding the different tvwo-curd
per.mutgtiqhs as the set of possible outcomes. The denominator of the
ratio d then be Py, , = 2652. To get the numeralor, we consider
ths&t~,§a} of the 169 two-card tombinations has two permulations and
geb 2’ X 169 = 338 as the number of permutations with the required
Qattnbute. Or Wo may start at the beginning as follows: T he num-
er of bermutations in which the spade occurs first and the heart
second is 13 X 13 = 169 by principle (b). And the number witl the
heart ﬁrsi", and the spade sccond is the same. Either of these sets of
permut-ajmons satisfies the specification. By principle (g) the required
number ig .169 169 = 338.  Again we fingd the probability is 13{gs.
: I Ilust-mth.e exemple: What is the probability that of four (e:;,l-ds drawn
from an ordinary deck, at least three will be spades?
Here agnin we are inferested in combinationg,
14

The total number
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of poseible four-card combinations is (042) = 270,725, To get the

numerator: the specification, at least three spades, means either three
or four. The number of four-card hands containing exactly three
gpades is (1.33 ) 39 = 11,154; the first factor is the number of three-card
combinalions of three spades, and the sccond is the number of ways
a card may be selected from the other threo suits; the product is taken
in accordance with prineiple (6). The number of hands with all cards

. N\
spades is ({f) = 715. By principle (a}, the number of hands with'the

required attribute is 11,154 + 715 = 11,869. The required(p?c?babib
ity ie 11,869,/270,725. A .

One might attempt to find the numerator by the follewing method:
The number of three-card combinutions of spa.db};\is (]35) = 286.
The fourth card may be either a spade or not g spade, und after three
spades have been selected, the fourth car hﬁy be selected from the
whole set of 49 remaining cards. Thusbk& tequired number of hands
1s 49 X 286 = 14,014, This argumenb.ds faulty because the hands
with four spades have becn count®d ‘more than once. A specific
three-card combination of spadesd8WKQ, and when the jack of gpades
is drawn from the remaining 49.¢8rds, we have the combination AKQJ.
But we also count this comblmation when the AQJ is considered and
the king is drawn from jt%i‘e,\rema-.ining 49 cards. It is now clear that
the hands with four spades have been counted four times in the above
figure. We can obt@in the corrcet result by subtracting from it three
times the numbg*,raiif hands with four spades. The result is

y o\ N 13

oY - = 11,86
NS 14,014 — 3 (4) 869

as beforé.:

I gliiéé?‘amre example: Beven balls arc tossed into four numbered boxes
sG\thut each ball falls in a box and is equally likely to fall in any of the
boxes, What is the probability that the first box will contain two
balls? )

Since the first ball may fall in any one of four ways, the second may
fallin any one of four ways, and so forth, the total number of possible
outcomes is, by prineiple (b}, 47, To enumcrate the number of out-
comes with the desired attribute, let us first divide the seven balls
into two groups, one containing two and the other five balls. This

15
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may be done in (;) ways. Now the group of two will be put into the

first box and the other five distributed among the other throe hoxes
Thiz may be done, by the samc reasoning as above, in 35 ways,  The

: . . 7 : .
number of favorable outcomes is thercfore 2) 3%, and the desired

probability is
7 35 N\
2 _IX3
i __T~:.dlla O\
~\ w

(The symbol 2~ is used to denote approximate equality.)

2.3. Stirling’s Formula. In finding rlumez'i(:al,j\';il‘hcs of probahili-
ties, one is often confronted with the evaluation&fYong fuetorial SNTILCS
stons which are troublesome to compute bysdiveet multiplication. I
an adding machine is available, and thore whe not g great number of
factors in the expression, it is oftcn'\éom'enient- to use logarilims.
However, when the factors becolfie) numerous, this methad also
becomes tedious, and much laborstay be saved by using Stivling’s
formula, which gives an apprmgi’tﬁate value of nl. It is

A /B ot (1
where ¢ is the Napierian base, 2.71828 - - . - A much more qecu-

rate approximatio (may bo obtained by replacing the factor o by
e U] Bt this refinement I8 ravely used. Mo indicate the AeCU-
racy of the formula, we may sompute 10!, which is actually 3,628 800.
Formula (}\)‘1}5ng five-place logarithms gives

e 10! == 3,599,000
’\\.‘
Themore refined formuly, gives:
N
\mi ) | 10! 2¢ 3,629,000

The error in (1) for 5 = 10 is a little less than
percentage ervor decreases as n increases,
2.4, Sum and Product Notations,

I per cent, and the

A sum of terms such as fg + ng
_ . 7

+ 7 4+ ng + ny i often designated by the symbol ¥ n, The =
is the capital Greek letter & , i is tion
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.The term following the ¥ is called the summand. The ¢ = 3 below =

indicates that the first term of the sum is obtained by putting ¢ = 3
in the summand. The 7 above the > indicates that the final term of
the sum is obtained by putling 7 = 7 in the summand. The other
terms of the sum are obtained by giving ¢ the integral values between
the limits 3 and 7. Thus

5
E (=1} %x% = 2t — 325 | 498 _ Fplo )
j=2 N\

An analogous notation is obtained by substituting the capitalGreek
letter T for .  In this case the terms resulting from subsﬁ-i’m,ﬁ-ing the
integers for the index are multiplicd instead of added. Phigs

e+ o] Y- 306

o=1

Using this notation, expression (2.3) derived'}}éﬁously may be written

k L 4
i T/ l—[ g L o) 3
ie1 3

2.5. The Binomial and Multindinial Theorems. The expansion
of the binomial expression (z = ¥ 18 given in elementary algebra
courses, and a proof of the copf@etness of the expansion is ordinavily by
induction. We ghall here ic*}@a.nd the binomial by a simple combina-
torial method which reéc{ﬂf generalizes to the multinomial case. If
we write the binomial ifythe form (2 + ) (z ety - (z+y),
which has n factors,he problem of finding the coefficient of one of the
terms, say x“—“yj’;\i'educes t0 the problem of finding the number of Ways
of dividing tha® factors into two groups. The first term of the expan-
slon is @7 x\J&h is obtained by selecting the z from each of the factors.
The nextterm. is some coeflivient times "'y, This term arizes by
seleetmg\t-he x from » — 1 of the factors and the # from the remaining
one\_The one from which y is taken may be chosen in any of n ways;
hence the coefficient of #* Yy 18 n. In gencral, to get the coefficient
of z"eye we must count the number of ways of dividing the » factors
into two groups so that one group contains a factors and the other
7 — a factors; y is sclected from cach factor of the first group and x
from each factor of the second group. The number of ways of dividing

the # factors into two such groups is (:)J which is the desired coeffi-
17



§2.6 PROBABILITY AND COMBINATORIAL METHODS
cient. The binomial expansion is therefore

(ﬁ'} _F_ y)n = g + nxn—ly + (;) xn‘—lyﬂ __I_ PO + yn

i

" —igd
= E (?;)a"- Yy {
=0

‘The multinomial theorem follows directly.  If the ex;n'vg{iun

T AR R Tk N .
O
- - + . * . 4 \“
Is multiplied out, one will obtain terms of the form g
- N/
Capage -+ g Y

S\
where €' is some eoefficient and the exponentg &itisty the relition
\%. 3

&

3

Z Wi = 1 \
i N

We wish to determine (. Termsol\he given form arise when oy )
relocted from n, of the n factors, #NY seleclod from ns of the remainin
factors, and so forth. The 1}1&1’1;[*;61- of ways of getling wuch i form i
equal to the number of w:g,ylg' of dividing the » factors inlo /: croup
containing ny, n, - - - W factors.  This is expression (3} of =eq, 2
Thus the general terr"l}. of the multinomial expansion is

i Y

. £
P O AR - - - g or 7! T
T '?’?2 & . 'H-g;!l 12 E H ?L;‘I

and we mafytite

P
¢\..' R
AT @zt g o Y w @
. N/ nLRE, i=1 i
) . - - )
Wehave indicated only that the summation is over the indices 1), ny,

N7y e The range of each index is zero to n, but thev eannot all

\w\ 3 be summed independently over that range beca

P use we must have

E % =n. The summation is over all sets of values of 7,
i1

Tep, ot

% such that their sum s 7 and such that each n, is an integer in the

range zero to n inclusive. The sum 1 very troublesome to write down
when n is large, Wao shall illustrate it for a simple case.

(@1 + 2y + 2t = 4!

R Tl ety oty
N1l tng! T £2G

TRy,

18



COMBINATORIAL GENERATING FUNCTIONS §2.6

The sots of values of (n, e, %3) which satisly n; -+ g + #y = 4 are
14,0,0),3,1,0),(3,0,1),(2,2,0), (2,1, 1), 2,0,2), (1, 3, 0, (1,2, 1),
(4, 1,2),(1,0,8),(0,4,0), (0,3, 1), (0, 2,2), (0, 1, 3), (0, 0,4). The
sum therefore has 15 terms, the first few of which are

. 4 41 4] 4! !
(JH—!-3?2—1-933)4:@95;'+§$f$1+§$fxa+2—,?xfﬂ?§+ R £
= 2t + dafey + defes + 6afxd + - - - 4 a2

A set of numbers guch as (3, 1, 0) is called a three-part partﬁz’on\ of
four. (2, 6) 13 & two-part partition of eight. The 15 tripleta\a}f‘nﬁm-
bers lisled above form the complete set of erdered ?Ihmc-pa?::x\paﬁ"é@'lions
of four.  The partitions arc called ordered because the salrre combina-
ton of three parts in a different order is counted as a gli'ﬂ:erent- partition.
If it is not specificd that the parfitions be ordered;ﬂs(\: unordered ones
are assumed ; thus, the three-part partitions of foUx%re simply (4, 0, 0),
(3,1, M, (2,2 0), (2,1, 1). In terms of thewten, of partitions, the
mudtinomial sum (2) may be deseribed hrieBy as follows: the sum is
taken over all ordered k-part partitionsoi’n, the parts being (ny, 7,

). R

2.6. Combinatorial Generating Functions, The cnumeration of
poussible outcomes and of outeomes with a certain altribute can become
quite a complex problem. In Twet, it is easy Lo state problomsin which
the enumeration is practil:;{lly impossible, One of the most powerful
devices for solving enumerhlion problems involves the use ©of what arc
called generating f?.xnpt%? s.  The subjeet of combinatorial generating
functions is a ficld.gf.tnathematics in itself, and we shall consider only
a fow simple casgsiére.  We wish mercly to indicate the nature of this
method of andlysis.

Lot us cadsider the last illustration given in See. 2 where seven ballg
were tqsséa‘ into four boxes, and constder the function

.\' 3

\ "/ (w1 + @2 + %5 + 297

\ 3

The coefficient of a term such as z¥viz; in the expansion of this multi-
nomial is given by formula (2.3) as 7!/2141110!, which is just the num-
ber of ways of dividing seven objects into four groups so that the first
contains two objects, the second four, and so forth. So any term in
the multinomial expansion gives a deseription of a possible outcome; a
factor such as «f means five balls have fallen in the ith box, and the

numerical coefficient of the term gives the number of ways in which
19



§2.6 PROBABILITY AND COMBINATORIAL METHODS
that outcome can occur, If the z’s are now all replaced by one, the

4
. terms become simply 7!/ ]] nil, and to get Lhe whole sel of po=xible
i=1
outcomes, we need to sum this expression over all sols of Lthe ny wihose
sum is seven, This sum by the multinomixl theorem is just

L+141+1)7 = a7

If we want the probability that the first box contains two byl we
. shall sum 71/TIx;! over all sets of n; which haven, = 2, Lettsd rewrite

the term as )
'\
7! 51 .\
2!5' e !n;;!?’l.q,! (M"‘.
and now we wish to sum this over all setgs such't}}a.f Rz + Nz + ny — &

If we multiply 5!/nsln.ln,! by Imlm]m washave the genernl tertn of
(L + 1 + 1)%; hence the desired sum is ’fl'@l‘ﬁ! timoes 35,

The function (z, + 25 4 2, + s)? 36 & simple type of generaiing
function; it is an algebraie expressign which is given an interpretation
in terms of the physical problem’a{t'hémd. Tt may be nsed to answer
any of the questions that may beatked about the physical problen: (o
which it is related. Thus, if\the number of ways in which the jirst

and x; with powers greater than or equal to two.

Now let us consider another problem.  An urn contains five hiick
and four white balls. The balls are all drawn one by one from 1he
urn, and thesfiest three drawp are placed in a black box while the Tust
Six are plagedin a white box, What is the probability that the num-
ber of blaek balls in the black hox plus the number of white balls in
the white box is equal to five?

Wé,ma-y solve this problem by considering the balls of cach color to

mlgcl:\numbered. The total mumber of ways

NMhto tw

ones in the white box, The black box may be filled (g) (i) ways

. F5)
Since there are (2) ways of picking two blyek ones from the five black

20



| COMBINATORIAL GENERATING FUNCTIONS §2.6

. 4
ones to be among the first three drawn, and 1) ways of choosing one

white ball to be among the first three drawn. The probability is

5y /4N 7/9

2/\1 / 3f

The following generating function may be related to this problem:
(zt + x2)%(x; - ol }*

Here @, corresponds to the black box and . to the white one. The
first factor corresponds to the five black balls, and the second te the
four white balls.  'We shall consider the coefficient of the term{inyolv-
ing «{z§. It will be a polynomial in ¢, and if { were put equahtd one,

. AN \
the polynomial would have the value (3), since then we'should have

the coeflicient of z#z§ in (z; + 22)?, The coefﬁciem.{o? " in the poly-
nomial is the number of ways in which r halls canfall in boxes of the
samc color as the balls, In forming a term in 2fx§, we may choose
cerfain of the z,'s from the factor (z:t -+ 3‘2;(; @nd the remainder from
the other factor. Those chosen from the\first factor represent black
balls, and those chosen from the second ‘épresent white balls. Thus,
when a black ball is associated withoiHfe black box, we get a factor ¢,
and when a white ball is associaj;esif’{vith the white box, we also got a
factor . The power of ¢ then gives the total number of times a ball
is assoclated with a box of4f% eolor. On expanding the gencrating

function, one would ﬁ\{éf ‘the cocfficient of zizit® to be (g) (T) as
before, WO

The generatingnction is of no value for this simple problem, but
it becomes useflil if more than two colors are considercd. Thus sup-
pose an urr}\(&)ﬁfﬁincd 71 balls of a given color, ns of 4 second color, and
73 of a third color; and suppose m; are drawn and placed in 2 box of
the ﬁrs@féblor, ma arc then drawn and placed in a box of the second
co@{i‘,{ and the remaining balls, say ms of them, are placed in a box of
thethird color. Let n be the total number of balls; then

7 =%+ A2+ B =m + me + mg
The coefficient of 271w in the function
(@it + w2 + 2} (1 + 2ot + @)@+ 20 4 248)

gives the number of ways in which 7 balls match color of the hox con-
taining them. The coefficient is difficult to caleulate in this case, but
21



§2.6 PROBABILITY AND COMBINATORIAT, METIHOD

to find it is a straightforward procedure, while to find it without th
gencrating function is considerably more truublgsongn ) .
‘We shall consider one other kind of generating funciion.  If fiy
dice are tossed, what is the probability that the sum of the sprofs wi
be 157
Bince the first die may fall in six ways, the second iy foll iy s
ways, and so forth, the total number of possible onicomes i« v Now
we need the number of these outcomos that have o sum ezl 1o 1
In the ¢ase of two diee, it is easy to write down all possibledhnbina
tions which give & speeified sum.  “Thus to obiuin 4 SUANGE Tive, the
two dice may fall (1, 43, (2, 3), (3, 2 CLo b Thesemmpe T he nrdeied
two-part partitions of five when KOO I8 oxv!m{w[ u;r;,:'\.-l Pt dnoonr
problem we must enumerate all the ordered [vgsdant partitions o7 15
which have all parts between one and siy ineluki v
In problems Invelving partitions of b, there is Howenering
function which will usunily materially SRRy the ennmeration,  [or
the particular problerm of counting tJ{f:}u_w of getling 14 witl, Jive
dice, et us consider thig funetion: N0
(z + 22 4 'Lf—i—- 4 ah 4 afipe (N
Tt is & polynomial in T In whiﬁli;the term of lowesi dogiree 15 27 ] The
term of highest degree is @307 Tt us suppose that the funetion is
written as the product of five factors Instend of ns o fif1) power. The
first factor will be a.s,faoé:iated with the first die, the second fuetor with
second die, and s%‘}ﬁf In the expansion of the function there will be
- @ number of terms %+ one, for example, will arise whep p i seleeted
from cach of thevirst threc factors and 28 ig selected fr
two factors\“Thig situation Corresponds to the appenrance of o one
on the ﬁ"l"\a:ﬁ}fhl'ee dice, and  six on the other two. 1t ig readily seen
that L\};@re Is & one-to-one Correspondence betie
ariseQn the ¢xpansion and the ways the five
gutitequired number is the con
~duhction.  Thig coefficient mg
following identity;

om the renuining

en the ways 2% ean
dice can totul |5 Henee
flicient of 215 ip the expunsion of (he
¥ be found most easily by use of il

1-—:3"_1 \
T3 “trztar4 L (2)

which may he verified by multiplyin

. . g both sides by 1 — 2. Using
this identity, the generating funetion

may be pui in the form:

(1 — z5)s
=y

22



MANGINAL AND CONDITIONAL PROBARILITY 82.7

We may omit the factor z5 and find the coeflicient of 2! in whut
remaing. Now we need another identity:

OGO GO

22(??;-%;{—1)2:‘, @)
i=0

which reduces our problem to that of finding the coefficient of it il;;\

[

oo

(1 ~ 2> E (4 + '*') o QY
T . 4 .\ ~

i={

If the first factor is expanded, all but the first two ter{pﬁ“ﬁ«gv& x toa
higher power than 10 and may be neglected.  And ndwthe problem
becomes that of finding the coeficient of z10 in \

C 4L AN\
(1 =529 ) ("- B 3’) 0>
. R AN
i=0 )
which has two terms in 2*: one when :r-hé*i is multiplied by the term
given by 4 = 10 in the sum, and thevo:!}}iér when the —52¢ is multiplied
by the term given by ¢ = 4 in thesim, The coeflicient is therefore

(14) -5 (2) and the pl'Obab'iliB} we set out to find is
"‘\

10
¢ 8J
() -+C)
A0/ " \4/ | enl
SN&TTT T T T 7.
N = 0837

g, £/

These examplos will serve to indieate the kind of attack that may
be made gh‘enumeration problems by means of gencrating funetions.
The mgs“t}ij.oa i powerful, bul we cannot develop it here. We merely
wisk(td Doint out the existence of the method,

2.7 Marginal and Conditional Probability. Suppose that there are
n equally likely possible outcomes of a chance event, and that they
may be classificd according to Lwo criteria. Thus the event may be
the sclection of a ball from an urn in which all the balls are colored
and all arec numbered; the possible outcomes may be classified accord-
ing to eolor, or according to number, In gencral, suppose there is an 4
classification with » classes which we denote by Ay, 4., - - -, 4,, and

23



$2.7 PROBABILITY AND COMBINATORIAL, MLETHODS

a B classification with s classes denoted by By, Bs, + - -, B, Thes
outeomes may then be classified in a two-way table us [ollows -
BJ. Bg ML Bg
A,y 1y | Nyp Ty
Az Tiap | Haw * Fay
_— | ) \
L\
S\
Al ng | npe Tra \ W
Here we have indicated that #,, of the » oy{i:v’éhles have botl jhe
attribute A, and the attribute Bi; nis have Bugh the attribufo | |
the attribute By; and in general 7y of the quteomes have the ativibuies

A;and B;.  The sum of all 718 . ASAN example we may eonsider
the drawing of a card from an ordinfiyy deck of playing curds:,  The
52 outcomes may be classified acpéf:dfng to suit (say A, A, 1. 4,
according to denomination (say By, B, - - - » Bua). In this exaniple
eVery ny is one, AN

The probability that the;é\?ent will have a given specitieaiion, A
and B, for example, willhe denoted by P(A4, By), and the valie of 1his
probability is obviogsl}nlg/n. In general,

\\...

%

P4, By = 8

N~
We may b%gterested 1n only one of the criterig of classification, sav A,
and mdzliiﬁgrent to the B classification. 1n this case B is omitted [rom
the e:}@bbl, and the probability of A, say, is written P4, and

AY P(dy) =" nag + - 4y,
\w\‘ o/ . ; i n
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or

P(4) = ¥ P4, By 0

jel

sinee nyg/n = P(A;, B;). Also the marginal probability of B;is
P(B;) = ¥ P(4, B) ' (2)
i=1

Thus the probability that a chance event has & specified attribute is
the sura of all the prohabilities of events that have that attribite. l\
The probability that a card be an ace is the sum of the probdhilities
that it be the ace of spades, the ace of hearts, the ace of diangonds, and
the ace of clybs. by

In & more general situation, supposc there are three el:lfte:rfia of classi-
ficalion, 4, B, and C. Tet ny; of the n possible_odtc¢omes have the
specification 4;, B;, Cy; and let the € clagsification be , Cop »» + Oy
with the A and I classes the same ag before, JEhe'complete classifica-
tion would be a three-way table consisting of ¢ 1a¥yers of two-way tables,
cach layer corresponding to a €. TheJRarginal probability of, say,
4; and €} is \ > :

P(A; Co) = YaB(4s, B, C) B
. g‘j—"OI’
and the marginal probabilityof C; is
~\
'{Nt T &
PGSR Y Y P, B, ¢ @)
A\, i=145=1
O = ¥ P4, ¢ 5
o\ ‘_;1 ( k) (5
\:"\so .
O = ¥ P(B; Cu) (6)
\} i=1

AN
Th ”gx't-"ensi on of these ideas to more than three criteria of classification
is apparent, _ .
Returning to the original two-way classification, suppose the out-
come of a chance event is examined for one attribute but not for the
other. We wish to find the probability that the other attribute hags a
specified value. The event, for example, may be observed to have the
attribute By. What is the probability that it also has the attribute 4 2?
The total number of outcomes for 4 given that B; has oceurred, is

Y
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2 fiis, and the number of favorable outeomes for A, are tiv Thu
=1

the probability of 4, given that B, has ocelrred, 1 n-_:_-.;/ Z g

This is ealled a ceondilional prabability and is donored By the - vmbo
P(AqB;). In general

. LT N
P(AiB) = -
7 >
Z Hi 2\, A
f=1 7\ ¥
\/
M \

P(B,Ll‘)

I
)
7
¥4

Hyf

ny
v
RN

L R B
3
4

i
7

On dividing both the numerator and (.lcnon{inut'nr of the Irieiion ou the
right by n, we have 4D

’ R .-’}:'Bj

P(4)B) = Jp@)—} %
1 udf i

ol P, B,

PBUT= T ) ®
or in another form ) )

RO B)) = P(ALB)P(B) ©
.\'\‘x.f = P(B|A)P(4)) (10

The last cquatjp;};nay be stated: the probability that an euteome will
have the atbribute 4; and B, is equal to the marginal probability of
A; mult-ipja:e;d"by the conditional brobubility of B; given that .1; has
.occurrcdt\;”
Thendos of conditional probability has 5 straightforward extension
tggibuatinns involving more than two eriteris of classification.  In the
Gase of three criteria, for example, it may be shown directly thui

Pd,; B, )
P4, B = b 25 L)
P4, R, 1)
PAIB;, €y = 2200 By ()
{ ) CIL) P(Bh CF;) (]ZJ
also that
P4 B, ¢4 = P4, BiCP(Cy) (13)
= P{4,R, ClP(B;, ) (14)

= P(A‘;IB:-, CoP(BCOP(Cy) (15)
1]
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and other similar reletions could be obtained hy permuting the letters
4, B, C. Thus
P(A*'s B'f: Oh)

P(BlA;, € = PlAL O (16)
and .
P(A;, By, Cx) = P(Bj|A;, Ci)P(AC)P(C) (17}
or
P(dq, By, C) = P{BilAy, Co)P(Chl AP(Ay) (18}

We shall not take the space to write out all such possible relations, buty,
the student would do well to do so. These relations are fundamental
in the theory of stalistics and must be well understood, )

In defining conditional prebability we have used & rather sgpé:@ialized
model.  But it is apparent that the idea is quite generalysllet X be
any subset of the whole set of possible cutcomes, and lepFibe any sub-
set of X; then "‘\

_ P(Y)
PY|X) = 259) \\

for if ¥ Is the total humber of outcomes, nlﬁhl(’ number in X, and m
is the number in ¥, then P(Y|X) = m_{;@,zf’(Y) = m/N, and

N

2.8, Two Basic Laws of Prebability. The two laws correspond to
the two principles of enuméi’a\;bion digcussed in See. 2, The additive
law of probability states'that

If A gnd B are mut@aily exclusive subseis of the whole set of possible
outcomes of @ chandsévéni, then the probability thal the event asccurs tn A
or B 1s equal io ghe-probability that it ccurs in A plus the probability
that it oacws@t}?.’

Symbolicallj,\Wwe may write this as

*

lx

NS

P(X)eR

m\ P(4 or B) = P(4) -+ P(B) 1}
ThisNew follows directly from principle (a) of Sec. 2. In general, if
Ay, Ay - o -, Ay are mutually exclusive subsets of the whole set of

outeomes, then
A
Pldyor Agor dg -+ - or &) = ) P(d) (2)
i=1
The marginal probability defined by (7.1) iz a special case of this rela-

fion, The gpecification A, is fulfilled by the subsets A, Bi; 4., Be;
27 '



§2.8 PROBARILITY AND COMBINATORIAL METHODS

<3 Ay By hence _
P(A} = P(A;, Bior Ay, By - -+ or A, B

&
= E P(Aa'r BJ)
i=1

If the two subsets A and B of (1) are not muiuaily exelusive, then
(1) is no longer true. In this case, certain oulcomes have holh ihe
attribute A and the attribute B. Wo may interpret this in s of
the two-way classification given at the beginning of Sec. 7., #&ppose
we want the probability that the outecome is in 4, or 4,. oL N sty
of the first row of the table and By consists of the seeoned g-(ahu\lm. The
outcomes in A,B; satisfy both specifications, and thiwdhe fvo oty
4. and B; are not mutually exclusive. The probaliity that ¢l out-
come falls in 4, or B, is easily caleulated Ly ;LdQﬁ’g all 2y 1ot Tirst
row and second column and dividing by n. NN

S P(4; or By) = 2 2\

RN T
{5 P(4)) + P(By) — P(A,, BY) (3)
This gives us a more, geheral law of addition of probabilities.

If A and B arg Subsets of the set of outcomes of a chance crent. the
;{meability that 1heevent occurs in A or Bis egial to the probability that
i occurs in ./1 Blis the probability it occurs in B minus the probobility
that it oceurs¥n both A gnd B,

The si Ia:t’-iéh 18 illustrated in Fig. 1, where the outcomes of a4 chance
event{ém‘r(.: represented by points in g plane and two subsets are onelosed

b}{ tWo circles 4 and B, Certain outcomes fal] in the lenticular region
...qoﬁlmon_ to both cireles, and in adding the outcomes in hoth (?iI‘I(;]CS,
N these points are counted fwice and must therefore be subtracted once.

Symbolically, the additive law is
P(4 or B) = P(4) + P(B) — P(4, B) (4)

We may generalize this law to account for more than two subsets;

thus
P(4 or B or ) = P4y + Py + POy — P4, By — Pld, )

— P(B, ¢ g 5
o (B,C) + P4, B, ¢) (5)
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a8 i easily verified by drawing a figure similar to Fig. 1 in which three
circles intersect so as to have a region common to all three. The gen-
eral law for A subsets, which may be proved by induction, is

&
Pldyjords - - - or dy) = E P4y — ZP(As, 45
=1 b4

+ E P(Ai} A:"} Ak) e P(Al: A?: Ty A-’&) (6)
.4k
. ~
where the second sum is over all combinations of the numbers\[} 2,

© ko taken two at a time, the third is over all combinations ef the

'\
% N

N

JFaa. 1.

numbers taken three at a timé, and so forth. If all the subsets are
mutually exclusive, then all the probabilitics in the sums beyond the
{irst sum are zero, and reduces to (2),

We have essentially’derived the multiplicative law of probabilities
in defining condighgnal probability in the preceding section,

If some of théuicomes of a chance event can have both the atiributes A
and B, the wrobabilily of such an occurrence is equal to the probability
af A mgefﬁgl\ied by the condiitonal probability of B given that A has
occuredyior 1t is equal to the probability of B multiplied by the conditional
prdbability of A given that B has occurred. :
In dymbols,

P(A, B) = P(4)P(B|4) ()

= P(B)P(4|B) 8

Wo may refer to the model given in preceding section; or we may use

the model of Fig. 1. Let n be the number of points in Fig. 1; let m,

be the number of points in A (including those common to B}, ms be

the number in B, and ms be the number common to 4 and B. Then
29
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bl %1
P{A, B) = P
= M
Pl4) = n
M2
P(B) = re
By = M
PLB) = ol
O\
i
P{B|A) = o O
O
whence (7) and (8) follow direct]y. AV
In general we may show by induction that "N
¢’ {.' ) ,
P(Al; 112; L, A = P(A])P{A -.:il-'iij”\J .';Iil"]’,}\xh]f“(rl A .1.'..
COPCLEN e -
and there are A! such relations which :’l:y\hc obtained by prertuting
the letters in the right-hand side of Y81 The two relations for =2
are given by (7) and {8). W .
2.9. Compound Events, TheJnultiplicative aw of probabilisies is
particularly useful in simplifyili the tomputation of probabilities for

compound events, A compptnd event i one thit consists of fwo or
more single events ag wifen a dic ia tossed twice, or three enrd« ave
drawn one at a time from'a deck. The following simple example wil
lustrate the method: ™

"Two balls are’drawn, one gt 5 time, from an urn containing two
black, three white, and four red balls,  What is the probubility ihat
the first i8.fedt and the second is white? (The first is not repluced

before thesecond is drawn.}
Th‘ teomes of thig compound evont
to tfderitoria: the color of the first ball, and the color of the seeond
O,\haﬂ‘-' We may therefore construct a table like that at the heginning
of"Bec. 7. The 4 classification vorresponds to the color of the first
ball, and we shali let A4, .4 5 43 correspond 10 the colors hlack, white.
and red, respectively, Similarly the elagses B\, By, B, will eorrespond
ball, The total number of outeomes

to the same colorg for the second |
Bn=9X8g=7 It is not (g)
bermufations, not, Arrangements; ie., we are not asking that one hall

be red and one white; we require that the colors appear in a specilic
30

may be classified aecording

= 36, because wo are considering
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order. The complete table of ontecomes is

|5 5|5

A, 2 6| 8

A | 6 6|12

4,

§ 12 ‘ 1.2

and the probability asked for in the problem is \
P(As, By) = 13¢5 = 1¢ <\

By using the multiplicative law of probahilities, we Il{‘(’d\ only con-
sider the two separate events one at a time, Here wo'hust use the
law in the form \\
P(ds, By) = P(A)P (B, 4530
Now P(As) is simply the probability of draying'a red ball in & single
draw, which is 44, and P(B./4 ;) is the pl:(’&)’aﬁility of drawing s white
one, given that a red one has already Béen ‘drawn, which is 3. The
product of these two numbers gives’thb.i"equired probability

P(Ay, By) =29 X 36 = 14

The validity of the abov&jﬁé@hnique is not obvious. It is not
immediately evident that the marginal probability P(4,) can be com-
puted by completely distegarding the second event, nor that the
conditional proba.bilidq( corresponds to the simple physical event
deseribed above. N\ :

For a compouy.@ ¢ent consisting of two single events we need ouly
consider a 2 Xtable. Lot 4; correspond to a success on the firsi,
event, and Afcorrespond to a [ailure, and let m, be the number of
ways the event can succeed, and m: be the number of ways it can
fail.. Le% By and B3; be similarly defined for the second event. T.et
myg g’ m,, be the numbers of ways the second event can suceced and
fail 3f the first succeeds, and let ma and may be the number of ways
the second can suceced or fail if the first event fails. The 2 X 2 table
is

! Bl Bg

AL ’ wigiyr | Wity

uMla) Mty
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The total number of possible outcomes is
"= mymn + MiMie + Moo -+ HlotH on

The required probability is

P(4,, B) = T (1)
The marginal probability P(4,) is ~
. Myt + L XY - ml(?nll + ??312) . ':\._:.\ {2)
7 n ma{myy + Mue) + ma(nre, + Fids)

Now the probability of a success on the first (2\'0111;“““1'1;}.10111 revanid Lo
the second is simply m./(m, + mz), which iy nut'\o\({uul to 1the thove
expression unless

i+ Mg = may + (&>
9.\

i.e., unless the total number of outcox‘r}c?_;\ft'n- the second event i= 1he
same regardless of whether or not the first’event is a suceess.  The con-
ditional probability is M/ (May +ghag) and gives the probubulity of a

success for the second event undgr the assumption thut the fivsl wisa
sueeess. SO

We might be inclined to conclude that the conditional-probubility
approach is correet only if the number of outcomes for the sceond event
is independent of th{z outcome of the first cvent. DPrecisely the
opposite is frue. he correct probability is

N 2 my m .
£ D P A B _—— ———__ll_____ {
\ (s, ) M1 + Mg myy + Mg 3)

A simple example will clarify the situation.
and if a head appears, a black ball is placed j

appears, a black balt and g white ball are pla,
ball is drawn from the urn.

aarily be black, Using I, T,
white, the three possible qut
These three cutcomes are cle

Suppose a coin is tossed,
b an urn, while if o tail
ced in the urn. Then &
If a head is tossed, the ball will neces-
B, W io represent heads, tails, black, and
comes of this sequence are HB, TB, TW.
arly ng; equally likely. " If the experiment
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~ were repeated a number of times, we should expect the outcome HB
to oceur twice as often as either of the other two. P(IB) = 14, not
7 :

In general, the possible cutcomes of = compound event are not
cqnally likely if the number of cuteomes of the second event depends
on the outcome of the first; hence the definition of probability is not
applicable. However, if the definition can be applied to the constitu-
cut evenls separately, then it is possible to corapute the probability
of the compound event by using the method of conditional probabili-
ties.  Unfortunately, it is not possible to give a formal prgof Af these
statements.  We must simply rely on our intuition, or rathedof the
unport of whatever experimental evidence we may p'Qs.se\ss. Such
cvidence may be obtained, for example, by performing the above-
deseribed experiment a number of times. S

Hlustrative example: To illustrate further the moethéd of eonditional
probabilities, lot us compute the probability thabbf five cards drawn
from an ordinary deck, exactly two will be ades.

We shall suppose the deck consists of fqur',}l 8, representing aces, and
48 N’s, representing not aces. To usg ‘eonditional probabilities, we
raust assume the five cards are drawii®one at a time, and we must
assume a particular order such as A3M, N, N, N.  We shail use equa-
tion (8.9) with b = 5. ) '

")

P(A, 4, N, N, N) {
P(N|A, )P(N|4, 4, N)P(N|A, A, N, N)

= PP

Now P(4) = 443; with/one ace removed from the deck, P(4]4) = 3€,;
with two aces remfoved from the deck, P(N|d4, A) = 48<,. TProceed-

ing thus, ~G

P(A;§: N, N, N} = %63 X 251 X 4850 X 2749 X 484,

Thig.i§ $he probability for the given order, but the problem did not
Spe‘eifﬁ'”any order, so we must consider all possible orders. There are
51/(2131) = 10 permutations of two A’s and three N’s, 50 we have
10 probabilities to evaluate, and the required probability, by the
additive law, is the sum of these 10 probabilities. It isscon apparent,
however, that all the probabilitics are equal. Thus, for example,

P(J.V,A,N,N,A) ¢4§€2 X%l Xé;éo X4%9X%8

which is the same as the above number except that the numerators are

permuted.  Clearly this will be the ease for all permutations, Hence
33
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the required probability is

: ' o A0 XA X3 X AT X G

! r N = - e

0P(4, A, N, N, ) 55X 51 % 50 % 40
0399

17

Independent Events. If the conditional probability PB4} i cogual
to the marginal probability f(B), the events A4 amed B oare =00l 1o be
independent.  The outecome of B is not influenced in any wun byl
Thus a die may be tossed twice, and we may seck the probahifiy that

the results will be two and three in that order Ko\

P(2,8) = P(2)P(3]2) = P(OPR) = 1§ x T}

In the illustrative example involving two nees inadbved eneds he live
constituent events of the compound event willhdAudependens i we
require that each card drawn be replaced dMatMe deck and 1he Jdock
shuffied before the next card is drawn. sOlie probability itae the
second card will be an ace is then 4<, ingtdil of 3210 The probalility
that two aces will appear when five .c,rti‘:ds are drewn with reploconient
15 « \J
10(442)2(48%,)7 &= 0165

In general, o8

If the constituent evenls of gy compound erend are matually inde pendent,
the probability of the compoimd event is equal to the product of the probabil-
ities of the constituent Ghenis.
We may write thisp the form

£ > R
."\“'“P(Alr "4'2: B 1 4'1?&) = [[ P(“l") (4:)
provided "i,h\af =
P =LA 4 feralli g

:It<?3’imp01‘tamnt to remember that this probability is the probabiliiy of
. \"\Emcurrencc of the separate eve

o o nts in a specific order,
"he ad'dltu.re law of probability given by equation (8.6) can alko be
used to simplify materially ¢

i . ULy certain problems in compound evenls., A
St]} . ng example is provided in the foll owing:
ustrative example: Six cards are drawn wi
. ’ with replaceme . :
ordinary deck. What ¥ith replacement from an

s is the probability that each of the four suits
W1 be represented at least once among the six cards?

th\-‘.-'se S?ag solve the problem by finding first the probability that all
suiet e Sd }3 ot abbear. Let A symbolize the appearance of all the
8, an symbolize the nonappearance of at least one of the suits.

3
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Bince either A or B is certain to happen,
 P(dorB) =1
and since 4 and B are mutually cxclustve,

Pldor B) = P(4) + P(B) = 1
anid
Py =1— P(B} A
thus, il we can find P(B), P(4) can be determined at once. oA\ «

Lo get P(B), let us classify the possible outcomes favorabledo/B into
four sets: B, is the set of all outcomes in which spades aré-absent; B,
15 st for which hearts are absent; B;, diamonds egb’s‘éﬁt-; By, clubs
absent.  These scts are overlapping; an outeomer WRich consists of
ouly spades and hearts falls in By and in By, Year ¥

P(B) = P(By or By or Bpgw'By)
N\
and employing equation (8.6) ANV :
1‘)(8} = EP(H,) - EP(B\i} B:') + ‘E’P.(B:J -BZ"J BL‘) - P(Bl! BQ: Bs, B4)

in which the sums are taken 0‘__.6.1;‘.311 combinations of the subseripts.
‘The probability P(B;) that aspade will not appear in tlig gix draws is
(34)% and the valuc is the s\ﬁ}ne for all B;: hence 4

Ozr@) = 4040

‘The probability P(By, B.) that neither spades nor hearts will appear
in the six drawsis{14)¢ and is the same for all gix pairs of the four suits
taken two at@time; henee :

~
O SP(B, By) = 6(4)"
Simi]axlir '
e ZP(B; By, Br) = 4(34)®
(}} w -
a‘{ P(BU Bz} Ba, B.L) = O

since the simultaneous nonappearance of cvery suit is impossible. The
required probability is, thercfore,

P{A) =1 — 4(24)° + 6(04)° — 4(1{)®
381
A slight alteration of this example will illustrate another useful
technique.

fle

36
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Tllustrative example: Cards are drawn one at a time with replirenent

from an ordinary deck until all suits have appeared at Lt onee,
What is the probability that six draws will be required?

Referring to the preceding example, let P, denote the protu:bility
that all suits will be represented at least once if » cirds i drawvn,
Clearly

Po= 1= 430" + 608)" — 4(!7)"

Now suppose we knew the answer to the present problen for . Swenicral

value of n. Let p. denote this probabilily (that exactly s aled < will
be required to produce all the suits)_. : ) )

If n cards are drawn, the first appearance of cach m;ii&.:}t: leas onee
may occur on the fourth draw, or the fifth, or the S and so Tordlh,

Since these outcomes are mutually exclugive, we &:{'\'e

Po=pi+ps+pe+ - ;F}pn
N

..\“
pn = Pﬂ _'_s P?.-:_l

and in particular that RO

Po = L — 4G +604)° — 4QD° —~ [1 — 4(30)° + 6(15)" — 411 )7
= (%0)° — 309)* + 308\
== 147 A

&

From this relation we conclude that

2.10. A Priori and{}E\mpirical Probabilities, In introducing the
theory of probability we have relied heavily on the combinatorial
definition given ifi $he first seetion of the chapter. However, we have
scen that thigapproach has severe limitations, and the question urises
as t0 how useéful sach a theory may be.

A the‘%i;}“of statistics based on a priori probability would indeed
h_ave Xeey limited usefulness. While there are a few practical situa-
t{q[\l?i’ﬂ which such & theory could be used (the field of genctics provides

~Qag/important area), the great maj ority of fields of application oceur
jnfhere & priori probabilities do not exist, Our theory must he gencral-
ized, and we shall do i, quite arbitrarily. We shall simply assume the
existence of certain probabilities, and we shall assume that they obey
the same laws as do combinatorial probabilities. We may consider

probability of a head,_ though one cannog say what the number is.

We can, however,l estimate the number, We may toss the coin 2

large number of times and divide the number of heads by the total
38
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nuinber of tosses. This if 62 heads appear in 100 tosses, we would
estimate the probability to be .62. This estimate is called an empirical
probability.  We shall not make the error of stating that the correct
probability of a head is .62, because we know that if the coin were
{ozsed 100 times again, the number of heads might well differ from 62.
The empirieal probability is merely an cstimate of what we think of
a¢ the true probability. We shall see later that the estimate can be
mae more and more accurate by increasing the number of trials in t,}{e
experiment.

We may observe that we do not need to postulate the cxistene, of a
probability for every imaginable situation. We may as svell Timit
owsclves to operationally meaningful situations. Thap,,is;'we shall
not agsume the existence of a probability unless it is posgibfe to set up
an experiment by means of which the assumed préPability can be
eslimated, Referring to the question, mentionedin'tHe first section, of
drawing an even number from the whole sct of positive integers, we
do not need to assume that such a probabililyéekists. For there is no
way to estimate it; we cannot build am¥grn large cnough to hold
balls numbered 1, 2, 3, - - - ad inﬁniiglfm’ or even procure the balls,
Clearly this kind of limitation in thesfhgory will not limif its practical
application.

Our position then is this: WeﬁéVelop the theory by thinking about
ideal coins, ideal dice, idealrandom drawings from an urn, and so
forth, And we admit t-hé'}xistence of probabilities which have no
a priori basis, providedl.they can be estimated. We speak of the
probability of a hedd)being one-half when a coin is tossed. But
faced with an actul/coin, we refuse to say what the probability of a
head is. If thejedin appears homogencous and fairly symmctrical, we
may guess $Kat the probability is somcwhere near one-half, but we
shall not bg'strprised if & long series of trials indicates that the prob-
ability is\¥omewhere between .57 and .58, for example. We shall not
hegitale’to make statements of the following kind: whatever the prob-
abilits p may be, the probability of a tail is 1 — p, the probability of
two heads when the coin is tossed twice is p?, the probability of a head
and a tail in either order when the coin is tossed twice is 2p(1 — p), and
soforth, ‘Thus, we shall use our laws of probability on p.

The justification for these assumptions (that noncombinatorial prob-
abilities exist, and that they obey the same laws as combinatorial
probabilities) is simply that thoy work. A great mass of experimental
evidence supports the assumplions, while no evidence has ever heen

brought forward which seriously controverts them.
37
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2.11, Notes and References. The development of the theors of
probahbility began in the seventeenth century and has ('i?l].[ ine] = f.'."l,f_I—
ily to the present day. Tt is therefore an old and now Iairly extonszive
branch of applicd mathematics, The subjeet huel it origin in ponies
of chance, but it brought forth such a variety of interesting problias
that many eminent mathematicians were attracted toit,  Podav thee
is likely more work being donc in this field than cver betore, ared 1his is
due in large part to the rapid developments in stulistics.

An excellent modern textbook on probability theory i J. V. &pen-
sky, “‘Introduction to Mathematical Probability.” Me( }r:u\gliill 1ok
Coempany, Ine., New York, 1937. AN

7\

Ny

9.12. Problems

1. An urn contains three white balls and seven Blhek ones. Wil
is the probability that one drawn at random M De white?
2. If two coins are tossed, what is the pr\ob;ll_;ilil_v thet s hesd arud
a tail will appear? 4D
3. If a three-volume set of books Lé';\l:wcd on a shell inorandom
order, what is the probability that .tlié.,y'\\'ill be in thie correet order?
4. What is the probability of 8htaining three heads if {hree coins
are tossed? What is the probability that at least two heads will
appear? N\ ’
© 6. An urn contains thete white ballg and two black ones.  What is
the probahility that tjw{e:ba,lls drawn from the urn will hoth be wlhife?
6. How many tHrbe digit numbers can be formed with the int CEers
1,2,3, 4, 5,if duplieation of the integersisnot allowed? [f duplication
is allowed? "
7. How nlany three-digit numbers can be formed from 0, 1, 2, 3. 4
if duplicaticlt is not allowed? How many of these are oven?
8. Jn\fow many ways can a comamitice of three be chosen from
nineynen ? '
& “\9 There are five roads from A to B and six roads from B to ¢!, Tn
How many ways can one gofrom 4 to ¢ vig B?
10. I?ow many difflerent sums of money can be forme
of the six kinds of coing minted by the United States Treasury?
11. In how many ways can six girls and four boys be divided jnio
two groups of two boys and three girls?

12. In a baseball lea.gu_e of eight teams, how many games will he

necessury if each team is to play every other team twice at home?

13. .Hm!fr many foothall teams can be formed with |

play any line position and 8 men who can play
38
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d with one cach

2 men who can
any back position?
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14. How many signals can g ship show with five different flags if
there are five significant positions on the flagpole? :

15. How many license plates can be made if they are to contain five
symbols, the first two being letters and the last three integers?

16. IIow many disgonals are there in a twelve-sided polygon?

17. How many dominoes are there in a set from double 0 to double
127

18. What is the probability of getting a seven with a pair of dige?

19. What is the probability that two cards drawn from an ordinary
deck will be spades? ()

20. What is the probability that a five-card hand will conthin exactly
fwo nces? At least two aces? N

21. What is the probability that a bridge hand W,illi’be 8 complete
sit? "’\

22. Apurn contains four white, five red, and sixhlatk balls.  Another
contains five white, six red, and seven black balls”” One ball is selected
from each urn,  What is the probability the® will be of the same color?

23. Show that (n) = ( " ) O
T -7 TR

24. In how many ways can n different objects be divided into %

groups containing nq, ng, * -+ - ,m bhjects, if
nit a2 0N fop =0 — m?

25, An urn containg m whité and # black balls. & balls are drawn
and laid aside, their =u§r."unnoticcd. Then another ball is drawn.
What iz the pl'ol)ai)ilij:L}'\‘t- wat it is white?

26. Bix dice arc posséd. What is the probability that every possible
number will appehr?

27, Soven Ql'{% are tossed. What is the probability that every
numbor appears?

28. Whatis the probability of getting a total of five points with three
dice? 08" '

{3‘; Wn urn contains ten balls numbered from one to ten. Four
ball¥are drawn, and suppose « is the sccond smallest of the four num-
bers drawn. What is the probabilily that » = 37

30. If » balls are tossed into k boxes so that each ball ig equally
likely to fallin any box, what iz the probability that a specified hox will
contain w balla? '

31. Show that i CX;=0C E X..

i=1 i=1
32. Show that [] X7 = ¢~ ([T X3)*
i=1 i=1

$9
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33. Show that (}ﬂj Xy =3 ) XX,
i=1

i=] jml
241 - " o 2
34 Showthat [] X +n+1 -9 =[] (X2 -2
iml i=1 ]

35, Find the coefficient of z%% in the expansion of the binomial
(@ = ay)s o
~ 36. Find the coefficient of 2y%?® in the expansion of the tritnuial
(22 —y — 2)". _ N\

37. If six balls are tossed inte three boxes so thal (:-.u'i)\m eipiadly
likely to fall in any box, what is the probability that all Naxee wiil he
occupicd? : A

38. The corners of a regular tetrahedron are nufmbdred one, wo,
three, four. Five tetrahedra are tossed. What i the probubility

that the sum of the upturned corners will boJ2%)

39. The spades and hearts are removed 19 a deck of cards nnd
placed face up in a row. The remaining Gards are shuffled and dealt
face up in a row beneath the row of spades and hearts.  Whal j= the
probability that all the clubs will bé..beneath spades?  What 1s the
probability that among the 26 p@.ﬁ}s of eards, 16 pairs will consist of
cards of the same color? PN\

40. Six cards are drawn fregt an ordinary deck.  What is the prob-
ability that there will he dne pair (two aces, or two fives, for exnmple)
and four seattered cﬁr(E? That there will be two pairs and two
scattered cards? = W\

41. The face gaxds arc removed from an ordinary deck and the
remainder divided into the four suits. A cardis drawn at random from
each suit. 'Wh’at is the probability that the total of the four numbers
drawn is 26%

42.2 urn contains three black balls, three white ones, and {wo
red omes. Three balls are drawn and placed in & black box, then three

.ng}g are drawn and placed in a white box, and the remaining tiwo are
Nput in a red box. What is the probability that all but two of the balls
will fall in boxes corresponding to their colors?

43..An urn contains four white and five black ballg; a second urn
contz}ms five white and four black ones, One ball is transferred [rom
the hrgt to the secopfl urn; then a ball is drawn from the second urn.
What is the probability it is white?

4. In the above problem Suppose two balls, instead of one, are

transferred {rom the first to the second urn.  Find the probubility that
a ball then drawn from the second urn will be white. )
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45. 11 1t is known that at least two heads appearcd when five coins
were tossed, what Ig the probability that the exset number of heads
way fhroe? '

46. If 4 bridge player has seven spades, what js the probability that
lis pariner has at least one spade? At least two spades?

47. 1f a bridge player and his partner have eight spades between
them, what is the probability that the other five spades are split
three and two in the opposing hands?

48. A bridge player and his partner hold all spades except, K, 8,2.
What is the probability that they are split K and 3, 21in the gpposing
hands?  What is the probability that K or K, 2 or K, 3 of K73 2,
apprars in a specified one of the two opposing hands? | ™

49. A person repeatedly casts a pair of dice. He wins 1B he easts an
eight before he casts a seven. What is his probabilify of winning?
Note: ! + o+t 4284+ -« - = 1/(1 — x), %) < 1. '

50. Tn a dice game a player casts a pair of \dice twice. He wins if
the two numbers thrown do net differ b L ‘mere than two with the
following exceptions: if he gets a 3 on tho‘ﬁiﬁt throw, he must produce
& 4 on the sccond throw; if he gets(an 11 on the first throw, he
must produce a 10 on the second .tb.r”ow. What is his probability of
winning? N

51. The game of craps is played with two dice as follows: Ina par-
ticular game one person throws the dice. He wins on the first throw
if he gets 7 or 11 points ihe loses on the first throw if he gets 2, 3, or
12 points.  If he gets$d\ 5] 6, 8, 9, or 10 points on the first throw, he
continues to throwdhe dice repeatedly until he produces either a 7
or the number firsf’thrown; in the latter case he wins, in the former he
loses. What js‘his probability of winning?

52. In simple Mendelian inheritance, a physical characteristic of a
blani or gniwial is determined by a single pair of genes. The color of
peas is a}i example. Letting i and g represent yellow and green, peas
WQL b’(}:.'green if the plant has the color-gene pair (g, g}; they will be
vellow if the color-gene pair is (%, ¥) or (3, ¢). In view of this last
combination, yellow is said to be dominant to green, Progeny get one
gene from each parent and are equally likely to get cither gene from
each parent’s pair. If (y, y) peas are crossed with (g, 7) peas, all the
resulting peas will be (y, ¢) and yellow because of dominance, If (@, 9)
beas aro crossed with (g, g) peas, the probability is .5 that the resulting
beas will be yellow and is .5 that they will be green. In a large number
of such crosses one would expect about half the resuiting peas to be

yellow, the remainder to be green. In crosses between (y, g) and (y, g)
41
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peas, what proportion would be expected te be yellow?  Whit pro-
portion of the yellow peas would be expected Lo be {y, )7

53. Peas may be smooth or wrinkled, and this is a simple Mendelian

character. Smooth is dominant to wrinkled so that (s, &) and s w)
peas are smooth while (w, w} peas are wrinkled. If (¥, ¢) («. ¢ peas
are crossed with (g, ¢) {w, w) peas, what are the possible oudcomes and
what are their assoclated probabilities? For the (y, ¢) (5 7 by
(g, 9) (3, wy eross? Forthe (g, g) (s, w) by (3, ) (s, ) cross?
64, Albinism in human beings is a simple Mendelinn eha™eior,
Let @ and » represent albine and nonalbino; the latter is dopatnt, o
that normal parents cannol have an albino ehild unless hg:,i\h‘n.l\':- i, et
Suppose that in a large population the proportion of m gefics i< and
the proportion of @ genes is ¢ = | — p, so that ¢2 6 The individuals
are albinos, Assuming thaf albinism is not a fzu':.'t@(’i'n the selection of
marriage partners or in the number of children af ;LEp:u'[ ienfar marninge,
what proportion of individuals of the net gencrtion wonhi be
expected to be albinos? If albinos manded only albinos and tead as
many children on the average as nongibinos, what proportion ol indi-
viduals in the mext generation wolld be expeetod 1o be alhinos?
What would happen eventually ta¥the population if albines cotiinued
generation aflcr generation toditate only with albines (assume nim-
ber of individuals in each gendtation is the same)?

68, It is known that ai’wrn was filled by casting a dic and puiting
white balls in the urn eqbal in number to that obiained on the {hrow
of the die.  Then blask balls were added in & number determined by a
sceonFi throw Of. the die. 1t is also known that the total numler of
Dalls in the UFQQS‘éight- What is the probability that the urn contains
cxactly fivogrhito balls?

56. Uty contains two white and two black balls; urn B contuins
threez\ fte and two black balls, One ball is transferred from .1 to B;
one ball s then drawn from B and turns out to be white, What is

...&pg\probablhty ?hat the transferred ball was white?
\Whi':e E&a]fil &i;l}?&zleng Cf)l}t-ains 12 black and white balls; one has 8
: 3 > § white balls, and three h
?rrélrésti;a{;wn at raizlcfom, E_L-Ild, three balls are drawn without replaccment
urn, —1'wo of the three are white; the other is black, What

E‘J flh?? probability that the urn drawn contained 6 white and 6 black
alls? -

ave 4 white balls.  An

B8, Three hewspapers, 4, B, C, ar

. . e published in : ain ci
is estimated from a survey theb of { P ed 1n 4 certain city. Tt

he adult population:
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209 read A

16% vesd B
149 read ¢

8% rcad both 4 and B
8% read both A and
4%; read both B and €
247 regd all three

What percentage reads at least one of the papers? Of those that read
atb leasl one, what percentage reads both A and B? N\
59. T'welve dice are cast. What is the probability that each of\he
six faces will appear at lcast onee? L\
60. A die is cast repeatedly until each of the six faces pears at
least once.  What is the probability that it must be cas‘g\nt:%nvt-imes?

»

o
$&
NS
O
‘33\;*
)
\3§ *

e,
4 f(}
/\ "
N
O
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CHAPTER 3
DISCRETE DISTRIBUTIONS

. 2. N
3.1, Introduction. In Chap. 2 we weve concerned with finding the
probability of a specific outcome for a certain chance evefi)" In this

chapter we shall be concerned with a complete set of prefthilitio:, A
simple example Will introduce the idea.  What is theJrobability that
@ heads will appear if four eains are tossed? Deqoj':fng the probubility
by flz) (this is the functional notution): \\
O o
. & £%¢
floy = 5+ 08t <4 (1

We have a function which tells s+ directly what the probulility is
for any value of  in its possible\ringe, whieh is zero to four inclusive.
The function gives the complate set of probabilities for the given char-
acter (number of heads).. We may caleulate the function by piving =
each of its possible vgﬂu@,s, and we may then plot the function, s in
Fig. 2, using VerticiKﬁ«nEs of length equal to f{z) on some seale. Nince
one of the valuesiof #1s certain to oceur, the sum of the set of probabili-
ties must be gnty'hecause the probability of zero or onc, or two, o
three, or 1’9&12 Ieads, is cqual to the sum of the separate probabilities,
&

4
N L i@ =1 (@

: ,‘\Tﬁe fu_ncti(m of f(z) is called a discrete probability density function, o
d.i,;st-m-bumon f'a.mct-ion. We zhall usually refer to it moi-e briefly as
simply a.‘denszty or a distribuiion. Tt is useful to think of f{z) as giL\'ing
the relative frequency of occurrence of the separate values of = Thllﬁ-
suppose the four coins were tossed a very large number of Li;n.es. Wé
should expect no heads to appear (z = 0) in about onc-sisteenth of the
tosses; we should expoct one head to appear (z = 1) in about one-
fourth of the tossgs, and so forth. The graph of the .densi(tu.v malkes &



INTRODUCTION : 83.1

as often as one head, and so forth. The word about™ is used because
we :a.rc‘familiar with the fluctuations that accompany chance events
Thus., if a ’sing]e eoin is to be tossed ten timos, we expect five heads.
and [ive tails on the average, but actually some other division of heads
and tails is quite likely to ocour in a given trial. ‘

()
0.50
N
)
NS T
& N/
. :‘n’s
0.251 ““.\\'
:’ ;
'\s
2\
0 | 2 3 4 X

™
“Fia. 2.

. The results of an actusléeXperiment in tossing four coins are given
in the {ollowing taljla\gFéur coing were tossed 160 times and the
number of heads cotnted on cach toss.

%
e N/

Regwprs or Tosswe Four Corvs 160 Trams

p \x;\ Number| Actual Expected

,%J of heads | occurrences | oceurrences
p ,,\‘s ; o ] i} 0
~D 1 41 40
\/ 2 56 60
3 45 40
4 12 i
160 160

The agreement between actual and expected oceurrences is none too
good (it is to be remembered that the probability of a head may not
have boen exactly one-half for each of the four coins actually used), but
still the general character of the distribution of actual outcomes was
fairly well indicated by the distribution function f(x).
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< - variate, x. The density function ig g

§3.2 DISCRETE DISTRIBUTLONS

Knowing the density function of some attribute z, we can supply
the answer to any probability question pertaining to z.  Thus, r'{\f.er-
ring again to our particular cxample, the probahility of two heads is

;)
Pz =2) = (@) = b =3

The probability that the number of heads will he less than three 1\

Pz <3) = ) flz) = g <\
. x=0 '\\
The probability that the number of heads will be begivecn vne and
three inclusive is e,
3 N
P1<2<3)= Zf(ﬂf) =NV
=1 ..\\:

Given that the number of heads on a speciﬁ?}uﬁhtcorne is less than four,
the conditional probability that the number is nol more than two is

"";21
AN )

Pz <2z <dy -2 _ 11
J(@)
The symbol P(- - -) wilbalways be used as it has been used herc und
may be read “the pfobability that . . . .” Thusin the last cquation,

the symbol represents this phrase: the probability that z is less than
or equal to twoipiven that = is less than four. A vertical bar used in
the symb il always mean given that’ or “when it is known that”
and will Preécede the specified condition of a conditional probability.

3.2 Discrete Density Functions. The essential properties of dis-
cv&t‘-te,,\densit-y functions have already been suggested in the preceding
section, and we need only to deseribe them in somewhat more general
language.

The set of possible outcomes of
number, say &, of mutually
bute.  Associated with eac

a chance event are classified into a
exclusive classes aceording to some attri-
h class is a walue of 4 random variable, or

s K function of 2 which gives the
" probability that any specified value of & will oceur,

. The valria,te 2 may naturalty deseribe the attribute, ag was the case
in the coin-tossing Mlustration, or it may simply be & code. Thus in
46



MULTIVARIATE DISTRIBUTION 83.3

drawing halls from an urn, the classification may be according to color.
We could deline a random variable 2 by arbitrarily setting a corre-
gpondeuce between values of z and colors: ¢ = 1 corresponds to black;
& = 2 corresponds to red; and so forth.  When a red ball is drawn, the
variate has the value two.

The density function may be a mathematical expression involving z,
as was the case in the preceding section, or it may be only a table of
values. Thus if an urn containg three black, two red, and five white
balls, we may code the colors 1, 2, 3, respectively, and find the proha-
bilities .3, .2, and .5. We do not bother to construct o mathematital
expression which will take on these values when z is put equal 1‘.6\1, 2,

and 3, but merely tabulate the funetion: O
@1 2 3
flz): 3 2 5 R /

The word discrete is used to distinguish the vasalé from continuous
variates. which will be disenssed in the next eltapter. A variate z is
disercte if it can luke on only isolated valuegii'e,, if successive possible
values of ¢ are separated on the ¢ axis, THedistinction will be brought,
ot in mere detail in the next chapters

The set of probabilities represente@by a density function will always
have u v1m equal to one becausc Wetshall speak of a density only when
(13 all the possible outcomes aredincluded among the scparate classes
of outcomes, (2) the classesd@xc mutually exclusive.

3.3. Multivariate Distribution. When the outcome of a chance
event can be che_l_ractkerx“zd in more than one way, the probability
density funetion is & funclion of more than one variable. Thus when
acard is drawn flsdfh an ordinary deck, it may be characterized accord-
ing to itg suit-‘;{iﬁi"to its denomination. Let ¢ = 1, 2, 3, 4 correspond
to the suitg\i@néozme arder (say, spades, hearts, diamonds, clubs), and
lety < L2, 3, - -+, 13 correspond to the denominations, A, 2, + « - |
10, I Q3 K., The probability of drawing a particular card will be
'dﬁ@d'by flz, ¥) and clearly

flay) =Y, 1<2<41<y<13 (1)

This function may be plotted over a plane ag in Fig. 3; thf: probabi1?~
fles are represented by vertical lines at the points (v, ) in the h.or1~
zontal plane where the probabilitics are defined. In this case, since
the function is & constant, the lines are of equal height.
To consider another example: Let four balls be drawn from an urn
tontaining five black, six white, and seven red balls, Tet z be the
47
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AN
\rl:h.mber of white balls dra\m and y be the number of red balls drawn.
he density is ,
o WG )
: = NESN\L —p
f(x,y)—ﬁ—(@)ﬁﬁ__ 0<st+y<4 2)
4

and its graph is shown in Fi 4,
2. . In this exam le,
defining a third random varlable, b'e, we might consider

42 to be the number of black balls
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drawn, and obtain a trivariate distribution. But 2 18 exactly deter-
mined Ly .+ and y since 2 = 4 — 5 — 4. No new information can be
obtained by wlding z to the set of random variables characterizing the
outcomes, snd, in fact, if z were included in the distribution function,
the set of probabilities represented by that function, flz, y, 2), would
be exactly the same set that we have already obtained using  and y.

F{xy)
0.25 A
N ’
Al
NN
% N
0 ] /2 3 A~ ‘«. I4 5

PN Fie, 5.

A simpler exmifple of functional dependence is that of tOSSl.Ug 8 comf
say four times"Let = be the number of heads al}d y he thg nun.:lbe‘rl;)v
fails. Sjm.: X+ y must be equal to four, the variables are hlmcmon%l ¥
depe]lgiei’l‘;;';' knowing one, the other is exactly determined. ie

dens{@z‘;i" \
s = (G (G) srv-s

i1t graph iy given in Tig. 5. It gives us O lnfm?ﬁffﬂ;?fé
¢ functiop used as an example in Sec, 1; the sct of proba
Exactly the sume as before. . ivel
We have used the terms dependent and independent :tr; t:roo SSEE‘S i
different connections. In Chap. 2 we defined two events
49



§3.3 DISCRETE DNSTRIBUTIONS

pendent if the conditional probability of one, given the other, was
equal to the marginal probability of the first. We shall in the future
refer to this kind of independence as ndependence in the probability
sense. Returning to the urn example: & and y arc functionally inde-
pendent {(since y is not uniguely determined when z is known), but they
are dependent in the probability sense (as we shall sec).

In the urn example, the marginal density of 2 is found by applying
the definition in Sec. 2.7 (i.e., Sce. 7 of Chap. 2), and is

©2)
f(x)=Zf(x,y)— LAt D<a<an” (3)

% B 18y 73\
. 4 "

The sum may be performed by means of an alcreb\aw identity, but
here it is simpler 0 consider the problem anew asbiie involt ing ( white
balls and 12 that are not white. Similarly thé'miarginal density of y is

1) = Z @, y) = %%} 'D 0<y<4 (@
‘~:f: 4

This function is plotted i in Fﬁg 6. The height of the line at 4 = 0,
which represents 7(0), is eq}lal to the sum of tho lengths of the vertical
lines along the z axist qFlg 4; f(l) 18 the sum of the lengths of the
vertical lines along $he line 5 = 1 in F]g 4, and so forth.

The cond:ltlonal\dcns ty of @, given y, is deﬂned exactly as in Sce. 2.7
and is dencted by

403
1z, y)
\”M =i

()( —m)

\‘: ( ) 0<e<4—y
Similarty

fylz) = Q)(&L - xhy)

0<y<4-3
(m)

H z were given some specific value, say # = 1, we could plot the density
B0



MULTIVARIATE DISIRIBUTION §3.3

f(y|1) by giving ¥ its successive values: 0,1, 2 3. The vertical lines
would have the same relative heights as those along the inez = 1 in
Tig. 4; their lengths would be increased by the factor 1/f(z) evaluated
for z = | g0 that the sum of their lengths would be one, We observe
that f{y[=] is not equal to the marginal distribution of ¥, 80 that y and 2
are not independent in the probability sense.  Of course, the fact that
fly'z) involves o is sufficient evidence that the two variates are depend-
ent in the probability sense.  If, however, we had an example in which

N
7] n
Al
N
0.25 RS
D
&€
-— ,‘“ l .
0 P 3 4 ¥
\'\ F1c. 6.

N

Kylz) did not involvei:c;‘it- would still be possible for the two variates
t0 be depemlent’bée\aﬁsc the range of ¥ might depend on . If boffh
Hylz) and the xan e of % do not involve z, then the two variates will
obviously badddependent in the probability sense. _
As an egample of a distribution involving several variates, suppose
12 cardsidve drawn without replacement from an ordinary deck, and
let I%é':the number of accs, zz be the number of deuces, 23 E}e thg
tumber of treys, and @, be the number of fours. The distr:il::y,le.n of’
these variates js given by a function of four variates and 1§ in fact,

| fxy, 2o, 2y, T4} = (;1) (le) (5:3) (f) (12 & = i? —_.'xs — .7;4)

52
12/

where the range of each variate is 0 < 2; < 4 subject to the restriction
51
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that Za < 12. There are a large number of marginal and conditional
distributions associated with this distribution; a few examples arc

4) 4 44 )
f(x x)= Lo T3 12“-$2—213 OSLU.'S’;I

52 T2+ 23 < 8
. (12)
() (222 S
X4 12 — Xy a
flws) = —(5—2)———- 0<z <14 .'\.\,,'\
12 «

f(xz,x.;[x;,xs) "'( ~
(4) (4)( 36 ) R
_ T2/ NI 12—$1—x2-—x3—x4 0&w< 4

( 44 ) CB\e\ﬁ- e K12 — 2y — 23
12 — 2y~ 25 O

the first two being marginal distributions¥ind the third a conditional
distribution. The distribution Jlzy, @y, s, 24) itself may in this case
be regarded as a marginal distributiont of some more detailed distribu-
tion, for example, the six-variatg, distribution of Ty, Te, Tz, Ta, T, Lo
where x5 and x4 are the numbers'of fives and sixes that appear amaong
the 12 ¢ards drawn. Q
~ We cannot plot the'f@f-’va.riate distribution; in fact, we have used
all three dimensions of\conceptual space in plotting bivariate distribu-
tions. This couldhave been avoided by using a different device ; we
might have usedi&ots of different sizes rather than vertical lines and
thus picturgaft:?he bivariate distributions in two dimensiong. This
method would not have given as clear a representation of the relative
magnitude of the probabilities, Using the dots, we could get a pic-
torialirepresentation of a trivariate distribution, but for more than
reg variates no simple graphical representation is possible.

he probability that random variables will fall in any region of their
space is obtained by summing the density function over all points in
the region.  Suppose a bivariate density f(z, ¥) is defined for = 0,1,
2, yrandy =0,1,2, - - . » 8. The probability that z < 5 and
y < 3 is obtained by summing f(x, ) over the region defined by the
nequalities (the rectangle in Fig. 7). -

E=0 y=

Pe<sy<a =3 Y fny)
0
b2 _
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5 - - - - " ———

€ N\
A\
2 AN
,’“‘"
| ,"(’}}'
s A0
0 i 2 3 4 5 3§ N X
\\

F1a. 7.
'\V
The probability that the sum of z and 7 JS'Iess than 5 is equal to the
sum of f f\a ¥} over all points Wlthm «thp ‘triangle bounded by the line

4y =
Pz + y < 5) = f(0, 0) -L-f?i’o) + f(2, 0) + 1(3, 0) 1 f(4, 0}

+f(0 1‘) + L)+ SE D+ 16,1
Q,, )+ 71, 2) + 52, &

, 3) + (1, 3)
\‘_Pf(o 4:)
\g,\ < 2 z Sz, y) = E 2 Iz, y) .
z=0 y=0 Qx=0
Some othe‘z%mmples are
\ N &
~\J Plx+y=5= ) flz, 5~ =)
\/ a:gi]
Pz <2ly=238)= ) fzl3)
=0
2
3 £, 3)
) S 3)
x=0
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33 s w)

Pla <2y >3) =229%w=4

T 3

DEDNICRY

r=0y=4
Plet+y =2+ 4> < 5)
02 +70, 1) +7(2,0) o
J0,0) + 70, 1) +£(0,2) + f(1,0) + (1, 1) + J(1,2) +7(2,0) F/2.1)
For three variables, the regions may be troublesome to visu ;llizd_,}nd
for more than three variables, we must rely on the analyticgl Heerip-
tion of the region to determine the required sums. Som‘c\rcl'ut.i\'uly

easy examples are ‘

3 4 6 ‘ :

P($S3,y§4,253§6)=2 Lﬂ%ghz)
2=y =022 )

%

- P(.:r +y=4z=2) = i f(s_;‘}"— x(2)
z=0 0N

" ‘ﬂim 6—x—y

8 :
2}’ 20 Y fly,2)

Prt+y+z<0) =4
SNEZ0 7=
v’,':'..‘ i 6—;'1:
Pety+z=8B =3 ¥ fa,u6-z-y
a =0 y=0

N

3.4. The Binomial Distffr%ution. The binomial distribution is prob-
ably the most frequgr?bl} used discrete distribution in applications of
the theory of statigics. It is the distribution associated with repeated
trials of the sami¢event. Suppose we denote by p the probability of
suceess of somg€vent. The event may be the oceurrence of a head
when a coir(i5 tossed, in which case p = '4; it may be the occurrence
of a sevefi When two dice are cast, in which case p = 1§; it may be the
oceurydhee of at least two sces when five cards are drawn from an ordi-
narkj':aeck, in which cage J ;

\ g

OO0 ()

Or more generally, p may represent the probability of oceurrence of

some actual event to which no numerical a prioni probability can be
assigned, ' -

B4
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Whaicver the event, if the probability of its oceurrence is 2, the prob-
ability of ilx nonoceurrence is 1 — p, since we eannot suppose that the
event cun both oceur and not oecur in a given trial. It will be con-
venient 1o denote 1 — p by ¢, and in speaking of 4 given trial we shall
say the probability of a sucecss is p and the probability of a failure is ¢.

pteg=1
Now suppose that # trials are made. We shall be concerned with the
number of successes, r, that oceur among the n trials. The variate ©

has the density .
# A\

fle) = (2) rgr 0<z<n o

N

- "‘
N
‘ " . . .
ginee there are ( ) orders in which z success and.\??( # z failyres can
& -~

oceur, while the probability for any particulassOzder is p*¢" =, This
distribution is the binomial distribution. Ii;\\iga discrete distribution -
of one random variable, a. . <
The funciion contains two other vaziibles p and n (g is not counted
beeause it is determined by p) of a diffevent character. Their variation
is between dillerent binomial disteibitions; for a specific binomial dis-
tribution, » and % must be gigrm_{ dtumerical values,  Variables of this
kind arc called parameters. e function actually represents s fwo-
parameter family of distriblions, and a speeific member of the family
Is given when z and n, &re'given specific values. The parameter n is
called o discrete parampler, since it can have only the isolated values
1,23 .. it-,,ﬁ-'];rul(l be meaningless to speak of, suy, 2.53 trials.
But p is a conidelous parameter, since it can conceivably have any
valuc in e A{E}irg;(z zero to ocne. Thus it is possible for p to be .-E'?, 5a¥,
in the ene ©b 2 true coin, or possibly .5000037 in the case of a slightly
blased oGin’ Any arbitrarily chosen number between zero and one
is an afbwable value of . o
”':lf\&'\ﬂ barticular binomial distributions are plotted in Fig, 8. 'In (c..r,),
F dandn = 4:in (h), p = 8andn = 3. In general, the binomial
density will have a maximum value determined as follows: L-fst m
be 1he integral part of the number (n + 1}p and let e be the fractz?ngl
Part. Thusif n = 7 and p = .3, we have m = 2 and e = 4. The
largest valye of f(x} occurs when x i3 put equal to m; m is called the
modal value or gimaply the mode of z. “To prove that t-hls_ value of &
does maximize f(z), let us assume for the mome.nt that e 13 not zero,
and let us form the ratio f(z + 1)/f(&). We wish to show that this
ratio is less than one when & is greater than or equal to m, and greater
- BB
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than one when z is less than m. We are thinking of a situation like
that illustrated in Fig. 9. Now

fe+1) pn—2z

f{z) gr+1
£(x) Fx)
0.50
N
O\
0.251 A\
z‘*‘&’
0.25 ,’2"}
.\{;‘:‘ !
N
AN N
PAS,
i 0
0 2 3 4 x NN t 2 3 X
«3 -
(@) R\ (6)
. “Elg. 8.
%) Ci\-
e\J
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7N
E § *
P\ 4
A\
2
O
AP '
/*\ Ne”
\/ . (| '
A R e T ———— m-lom e e pd rli' X
Fic. 9.

and if & ig greater than or equal to m, then

pn—zx .pn—m

gz-4+1~gm+1

On substituting (n + 1p — eform, the right-hand expression may be

written
66
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pr—m _(n+1) —[(1 —¢)/qg]

¢gm+1" {n+ 1)+ = e/p

which is certainly less than one. If z is less than m — 1,

£n~x>g_3n-(m—l)
gx+1 q m

Pty e
¢ n+ Lp—e QA
n+1+4efq @
n+1—efp N

£\

>

and is therefore greater than one,  We have omitted tige};a;sé

z=m—1 '....\g’
here y

=P
q

_{nH 1)+ e/q
(n 1) — e/p

which is ugain greater than onevi.‘f:'é?s not zero. If ¢ = 0, the ratio is
equal 1o one, and f(m) = f(m>="1); there are two largest values of
Jx) which are equal and shich occcur at ¢ = m and at = = m — 1.
Thig situation is illustr.a;ffé in Fig. 8{a) where (n + 1)p = 2 is an
exact integer, so that 3@) and f(2) are two equal maximum values of
). O - '
For large valuedef n the appearance of the binomial distribution is
generally like £hat of Fig. 9. In Fig. 8(b) the mode is at 2 = n when
P = 8 and 3, but as » increases, the mode moves away from the
extreme”«ri;g\lt end of the range; thus, if » = 100, we have

~O 101 X .8 = 80.8

) Y
) 3

80 that the mode js 80 and is well away from the extreme value of
T = 100,

The.(i-omputation of binomial probabilitics becomes troublesome
when 7 ig large. Approximate methods can be developed for comput-

ing (:) P°¢"=, but we shall omit these because the computation of

Single terms is rarely required. In most applications, partial sums are
Needed. Thus we may require the probability that z be greater than
67
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an integer a,

P@>a) = 2 f(z)

r=g+1
Methods of computing such sums will be given in Chaps. 7 and 11,
3.5, The Multinomial Distribution. The multinomial distribution

Is associated with repeated trials of an cvent which can have more than
two outcomes. Thus the outcome of tossing a die may be any one

of the six numbers 1,2, + - - 6. If the event refers to the appedeines
of aces when, say, seven cards are drawn, there are five possikle out-
comes: (), 1, 2, 3, or 4 aces, 2\

In general, suppose there are k possible outcomes of ;;}ffTi;mcc cvent,
and let the probabilities of these outcomes be denoted\by py, ps,- - -
<

7

pi. Obviously we must have ~\

1

E =1 PN {1)

. = "‘.\ W

~ justasp + g = 1in the binomial case Stuppose the event is repeated
 times, and let z; be the number of dimes the outcome associated with
P1 aecurs, let x> be the number of ¢imries the outeome ussociated with Pz
oceurs, and so forth. The dengity for the random variables xi,

N

C mis o
N\ . . &
g a < 2 [ e o
N H Ei!".:l
i1
QG

where the rapge.of each x; is zero to n inclusive, subject to the restric-
AN
. 3 - .
tion that& L= n. We have writton the function as one involving
AN\ =1
0111’}{'\!?:,'L L of the 2/'s since only & — 1 of them are functionally inde-
...\' 7 . %
“Rendent; ay, is exactly determined by the relation E z; = n when the
1
€, 00t T are Speclﬁed. Thus this is a multivariate digtribution
3n_volv1ng k — 1variates. The Zr on the right-hand side of (2)isto be
Interpreted as merely a symbol for the exprossion

= — 2Ty — « - - - Tr

The expression (2) is a k-parameter family of distributions, the

barameters being n, PuPry *  pea. The other variable o is, like
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THE POISSON DISTRIBUTION §3.6
g in the binomial distribution, exactly determined by
Pe=1—-pi—ps— - — Pr-1
A particu'{ )-.1_.1‘ f::lse' of & multinomial distribution is obtained by putting,
eg,n=3L=8 9.2 p,=.3t0 get

o 31
S 1) = T = Tt (DB

This function is plotted in Fig. 10, o
(%) Oy
. (N
0.20 \ 7
O
"\
O
! D s
¥ %
| .
) i~ / /
/ \\“/ /
a N\
NO
L D
\\\~ Fra. 10,
It may$® shown by a direct generalization of the argument used in -
the preteding scetion that the maximum value of fley, 22, - - -, Ze1)

occutgAvhen the x; are put equal to my, the integral parts of (n + Ljp:
3.6, The Poisson Distribution. The Poisson density is represented
by the function

@ =Ty a0,1,3,3, 0

which has an infinite range. Since the exponential e™ has the series

“Xpansion
me me
6m=1+'m+g+"'+x!
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£3.6 DISCRETE DISTRIBUTIONS
it follows that
) J@) =1

zm={)

The distribution has useful application in situations where a lurge
number of objects are distributed over a large ares. To consider a
conerete example, suppose & volume ¥ of fluid contains a large numboer
N of small organisms. 1t is assumed that the organisms have 1o sueial
mstinets, and that they are as likely to appear in any part of thafuid
as in any other part with the same volume. Now suppose aldvop of
volume D is o be examined under o microscope, what is the Probabiliky
that z organisms will be found in the drop? We assumedhal V is very
much larger than D, Sinee the organisms are a:@suﬁmd to be dis-
tributed throughout the fluid with uniform probability, it follows that
‘the probability that any given one of them may\Ndefound in 7 is Ho7.
And since they are assumed to have no socialindtinets, the occurrence
of one in 17 has no effect on whether or notéanother ocours in D.  The
probability that ¢ of them oceur in D isthercfore

. D & * .”“_' ¥ n—x )
OEE

We are also assuming here that the organisms are so small that the

question of crowding may{De neglected: all N of them would oceupy

no appreciable part oftthe volume D. The TPoisson density is an

approximation to $he above expression, which is sitnply a binomial
density in which p,="D/V is very small.

: ' . The Poisson ¢hstribution is obtained by letting ¥ and N become

! Infinite in sugﬁ\af way that the density of organisms N/V = d remains
.ct_}_n_si_a_ant.'\\Bewriting (2) in the form b

O . z!N= Vo TNV
4 v AN z—1 _ Dd\"™*
) -

x!
the Hmit as N becomes infinite is readily seen to be
e=04(D)*
x!

which is the same form as (1) if we put Dd = m. This derivation
shows that m is the average value of x, since D, the volume of Lhe
. 60



OTHER DISCRETE DISTRIBUTIONS §3.7

portion esarnined, multiplied by the over-all density d gives the aver
age nuniher expected in the volume B,

We luve gone into some detail in discussing this distribution beeause
it is often crroncously applied to data which do not fulfill the assump-
tions required by the distribution. Thus it cannot be used, for exam-
ple, in slidying the distribution of insect larvae over some large crop
ared, hecallse insects lay their eggs in clusters so that if one is found in
a given snull arca, others are likely to be found there also,

The Poi=son density function is perhaps best thought of as &n

approximation to the binomial density, (f) 7", when Np 'is:l}zrge
'\

relative to p and N is large relative to Np. Ttis particularly useful
when N is unknown, "N
3.7. Giher Digcrete Distributions. The hypergeomietete distribution.

()2 o .

Equation {3.2) gives a special exam‘ple: Equation (3.2) is an example
of a bivariate hypergeometrical distribution.
The unifurm distribution isg
AN

is

The casting of & dielprovides an cxample.
The negative pipomial distribulion is

')

x~.‘?éc)=p’(xi_iﬁll)q” z=012 " ®)
’.\m’

am(z‘ge;e) = 1 since

3 $—|—?‘—1):= I 2.1 |
Z r—l_q 1—-qg 7

=0 i e e

An example is provided by letting p be the probability of success and
g be the probability of failure of a given event. Let f(z) be the prob-
ability thas cxacth: x + ¢ trials will be re_qqi_r_ed_ to pr:oduce F SUCECCSSes.
The last trial must be a succass, and its probability is p. Among the
Other £ 4~ r — 1 trials there must be r — 1 successes, and the prob-
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83.8 DISCRETE DISTRIBUTIONS

ahility of this is o
z + = 1 r—1qr
( =1 )p ¢

The product of these two probabilities gives the desired probability,
f(x), and is the same as (3).

3.8, Problems. Specify range of variates for every digtribution. Do

not obtain numerical answerg which require lengthy COanut:lf'ans.

1. Fivecards are dealt from an ordinary deck. What is thg dlsity
function for the number of spades? R\,

2. Ten balls are tossed into four boxes so that cach l):-iwll\is aoplly
likely to fall in any box. What is the density for the divhiber of bulls
in the first box? D

3. A coin is tossed until & head appears. Wh’éi.t\is the density for
the number of tosses? \

4. What is the density for the number th‘a\t appesrs when « die s
cast? _ N\

b. Two dice are cast. What is the d8nsity of the sum of the two
numbers which appear? N

6. Cards are drawn from s,n'v’r‘dinary deck without replacement
until a spade appears.  What is¥fhe density for the number of druws?

7. Ten dice are cast. What is the density of the number of ones
and twos? N

V8. An umn contaj%{fm black and n white balls. % balls are drawn
without replacement, “What is the density of the number of white
balls? Specify, the'range for the various relative sizes of m, n, and k.

9. Three c@i:n\s are tossed n times. Find the joint density of =,
the number.¢f times no heads appear; ¥, the number of times one head
appears;.@d'z, the number of times two heads appear,

10. A'machine makes nails with an average of 1 per cent defective.
Whats the density of the number of defectives in g sample of 50 nails?
\1‘11”. An urn contains 10 white and 20 black balls, Balls are drawn
ofie by cne, without replacement, until 5 white ones have appeared.
Find the density of the total number drawn,

12. Seven cards are drawn without replacement from an ordinary
deck. Find the joint density of the number of aces and the number
of kings.

13. Show that

[

20050
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PROELEMS § 3.8

by equating coeflicients of z¢ in
(L + 2)o(z + 1) = (1 L g)etd

Hence verify algebraically that the sum of the hypergcometric density
is one.

14. Usc the result of Prob. 13 to find the marginal density of the
number of aces from the result of Prob. 12.

16, Tn a town with 5000 adults, a sample of 100 are asked their
opinion of & proposed municipal projeet; 60 are found to favor it an
40to oppose it.  If in fact the adults of the town were equally, divided
on the proposal, what would be the probability of obtalmng z ma] ority
of 60 or more fav oring it in a sample of 1007 |

¥18. A udistributor of bean seeds determines from extenswe tests that
5 per cent of a large batch of sceds will not germma‘{sc‘ He sells the
seeds in packages of 200 and guarantees 90 pereent germination.
What 15 the probability that a given package w LkN;jOld.te the guarantea?

17. A manufacturing process is intended t@produce electrical fuses
with no more than 1 per cent defective, WItis checked cvery hour by
trying 10 fuses selected at random from {he hour’s production. If one
or more of the 10 failg, the process: is Halted and carefully examined.
I in fact its probability of producmg a defective fuse is .01, what is
the probability that the process'will needlessly be examined in a given
instance? R

18. Ruferring to the aboye problem, how many fuses (instead of 10)
should be tested if theinanufa('turer desires that the probability be
about .95 that the\process will be examined when it is producing
10 per cent d(,tec:tﬁes‘? ) .

19. 4 has tyf@pennies; B has one. They match pennies until one
of them hs 1\&\1 three. What is the density of the number of trials
required thend the game?

20. Refeumg to the above problem, what is the density of the num-
be “Oftrials given that A wins?

¢ A dieis cast ten times. What is the probability that the number
of ones and twos will not differ by more than two from its modal value?
V' 22. A Poisson distribution has & double mede at z = 1l and & = 2;
what is the probahility that z will have one or the other of these two
valueg?

*23. Red-blood-cell deficiency may be determined by examining a
Specimen of the blood under & microscope. Suppose a cerbain small
fixed volume containg on the average 20 red cells for normal persons.

63
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83.8 DISCRETE DISTRIBUTIONS

What is the probability that a specimen from a normal person will
contain less than 15 red cells?

“04. An ingurance company finds that 0.005 per cent of the popula-
tion dies from a ecrtain kind of accident each year. What is thoe proh-
ability that the company must pay off on more than 3 of 10,000 in=1red
risks against such accidents in & given year?

‘45, A telephone switchboard handles 600 calls on the average during
2 rush hour. The board can make a maximum of 20 connection=, per
minute. Use the Poisson distribution to estimate the probilNity
that the board will be overtaxed during any given minute. O\

26. A die iz cast until a six appears. What is the probghilits that
it must be cast more than ten times? A\

27. Two dice are cast ten times, Let & be the nqu}er’ot’ times no
ones appear, and let ¢ be the number of times two ones appear.  What
is the probability that z and y will each be Iess\than 37

28. In Prob. 27 what is the probability thap -y will be 1?7 What
is the probability that z 4 ¢ will be betwedn®2 and 4 inclusive?

20. A die is cast twenty times. Whatlig' the probability thai there
will be at least twice as many ones a,ﬂd‘ twos as therc arve threes?

¥80. Ten cards are drawn without geplacement from an ordinary deck.
What is the probability that the snumber of spades will exceed the
number of elubs? N

/31. Buppose 2 neutron péssing through plufonium is equally likely
torelease 1,2, or 3 othpr.n;é%rons, and suppose these second-generatiow
neutrons are in turn Bath equally likely to release 1, 2, or 3 third-
" generation neuiropnd, » What is the density of the number of third-
generation neutpons? :

32. Using thedensity of Proh. 12, find the conditional density of the
number 2of Aces, given the number y of kings.

33. }Isih«g the density of Prob. 9, find the conditional density of 2
and g{.g'fven #.

j?c"termi.ne the sums required to compute the following probabilitics
using density functions with as many variates as needed. Assume all

variates take the values: 0, L2, m
34, P2z +y < 3) 38. Plz > y > 2)
38, P(a® + y* = 25) 30, Plx +y =5ly = 3)
36. Plz* < 5|1 €y < 6) 40. P(z +y = 5|z = 3)

. Pla>2% —a),0<a<m 41 P(z$3,ys4,325,wzﬁ)
42.P(a$x§bly=z),0<a<b<m
43. P(z > 2z > 2)
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CHAPTER 4
DISTRIBUTIONS FOR CONTINUOUS VARIATES

4.1. Continuous Variates. A continuous variate is one that is not
restricted 1o have only isolated values; it may have any value in a
certain inferval or collection of intervals. N\

To consider an example, suppose a rifle is perfectly aimed gt the
center of o square target and fired soveral times after being elamiped
in that position. The bullets will O
not all «trike the center, because | N
minor virvintions in the weight of the
bullets, shiape of the bullets, in the
effect of humidity and temperature
on the powder, and other factors, - —
will cause variations in the trajec- AN
tories ¥ the bullets. After a few | (\Y -
shots the appearance of the target o\
might be represented by Fig. Pt
Let a rundom variable z be defited Tia. 1%
as the horizontal deviationsof the
center of a hit from a verfical line through the center of the target.
Clearly » may have aryiyalue in its possible range of variation. -

The number of possible values of z is infinite. In fa.ut,.any finite
interval, however Stpill, contains an infinite number of points. ?."he
intervul 001 t r,boz, for example, contains among others t_hc points
0011, 0011#5,6001111, .0011111, and so on. This fact raises some
diffi (:ultiusfiﬁéut defining the probability of z. In order to underst-..‘.md
the prob]i;m, we must digress briefly to consider the number of points
in andntorval. o '

“The number of positive integers is infinite; it is called a dem.?menj:ble
nfinity.  The symbol A will be used to denocte a denumerable infinity.
Any set of objects which can be put into one-to-one correspondence
with the positive integers will be said to contain A, objects. Thus
the set of even integers contains A elements, for we can set up the
correspondence

2,
1,2

4; 61 8}

0}_.,’2,_4’...
3,4 :

1
5}.- !n!..
1]
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§4.1 DISTRIBUTIONS FOR CONTINUQUS VARIATES

The set of numbers .8, 1, 1.5, 2, 2.5, . . . also has A, elements, since
we ean set up the correspondence

12345 .,
§J §} o 9 o 1o
1,2,3, 4,5 - - PRy

The set of unreduced proper fractions is also denumerable, since we
may set up the correspondence

i121231284 5 0 O
5: gr ro_;; 44 4 55 5 5: g + T ’\:\
1,2,3,4,5,6,7,89,10, -« - ,n, - - - -

where r is the largest integer for which r(r — 1)/2 < @ d

o{'
j=m— r(r;l) m\

Thus forn = 9, we have r = 4, j = 3. *\\

This last example shows that the numbe} of rational numbers (frac-
tions) on the intorval zero to one js ab 950 a denumerable set.  Mctu-
ally, in our sequence, every reduced ‘fraction is counted A, times.
Thus 23, for example, appears ageh

246 8% ... 2n
RS CIEE v
which is obvigusly &é’nilmemble get., In the theory of sets, it 1s
shown that every ipfinite subset of a denumerable set is also denuner-
able. This theofestl together with our last example shows that the
number of ratignal points on the interval zero to one is a denumerable
set. It camdlfo be shown that the number of rational points on the
whole :c\Qsis is denumerable.
The ¥otal number of points on a Anite interval, say the interval from
Zer040 one on the v axis, is called & continuous in finity.  This infinity
xﬁ yery much larger than a denumerable infinity and will be denoted by
1. We shall not prove that Ay is larger than Ag, but it becomes
reagonable when we attempt to count, the points on the unit interval.
Evgry point on the unit interval may be represented by an infinite
decimal.  Thus the point 24 may be represented by

.33333 - - .
and 14 may be represented by

2500000 - - - orby 2490099 . . .
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Conversely every infinite decimal corresponds to a distinet point on
the uynit b:lerval, We can count the number of possible decimal
expansion® as follows:  The first place can be filled in 10 ways, the |
gecond in 10 ways, the third in 10 ways, and so forth. The first n -
places can therefore be filled in 10~ different ways. The number of
infinite decinal sequences is therefore 104, since there are 4, placesin
the sequenee. When we compare 108 with 5, 10% with 20, 10100 with
1000, it Lecomes reasonable to suppose that 1040 is of an entirely
different ovder from Ao, This number, 104, is 4;. Actually thegdy,
are more decimal expunsions than points, because of certain duplica-
tions, as illustrated above for the point at 14, but these duplicatiéns ire
denumers ble and may be negleeted relative to A4, Any ﬁni,teln\umber
n raised (o the power 4, can be shown to be equal to anyzdf}her raised

y R

e, 12,

to that power, Since the i‘ﬁl}nber of points on the unit interval, 4,,
satisfies the relation \\ ; |
ng S Al S .‘[0‘iCI

A\ ¥

it follows that A (=104 since 94 = 10, The equality sign here is
uged to meun oRé-to-one correspondence. _
We can na@y. show that the number of points on the whole @ axis
I8 4:. Weémay set up a correspondence by means of the function
AN

O %’=;“_,1r§ ifr>0
=1_§._1_£; fa<0

Which is plotted in Fig. 12. Corresponding to every value of « there

8 & Unique valye of y between zero and one, and conversely there is a

Unique value of ¢ for every value of y between zero .::md one. Thus we

have g one-to-one correspondence between the points on the Enﬁmtc

% axis and the unit interval on the y axis. The number of points on
67
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the « axis is therefore A;. It can also be shown that the nuniber of
points in any finite interval, however large or small, 15 4. The cor-
respondence is set up as in Fig. 13. Let 7 and J be any two intorvals

" of different lengths, and let P be the point of intersection of two lines
joining their end points as illustrated. Any point z of 7 is nwde to
correspond to the point y of J which lies on the line joining  wnd P.
Thus any interval can be related to the unit interval,

Tiven more bizarre results than these could be obtained by mnw\ing
the theory of sets further.. Thus, for example, the number of hdints
in & finite or infinite plane is also 4,. But we have enough wEts for
our immediate purposes. The important idea is the (thixtTnetion

between the two infinities~—denumerable and continugnsy * Theve are
) . . T . . - \ 3 —
a denumerable infinity of rational points in any intergall But 140 10tal

N

<” Fic. 13.

~ humber of points is %Qaﬁd the number of rational poinis is c1fively

negligible relative $o the total number. We could remove alf the

rational points and‘essentially the whole interval would still remuin,

: V'Ve can now:@i\stinguish precisely between discrete and continuous
variates. {&\tﬁkcret-e variate is one which can take on a finite number
}of valuesera denumersble infinity of values, A continuous variate
#1s one which can take on a continuous infinity of valucs.

4,2, “Probability Functions for Continuous Variates, In the case of
{liégretc variates it is possible to have o finite probability associated
with cach admissible point, even when the number of puin%s i inlintte,
and yet have the sum of the probabilities equal to one. Thus if = is

the number of tosses required to obtain a head with a coin, we have
seen that the density of » is ,

J@) =G4y x=1,2,34 ...
and !

Zlf(:v) =1
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In the eise of a continuous variate this is not possible. No matter
how rapittiy we try to make the probabilities converge to zero, their
sum will srevertheless be infinite unless practieally all the points (all
but a deremerable sot) are given probability zero. Referring back
to the hurisoninl deviations of rifle shots on & target, it 1s clear that all

values of v within a small interval will be about equally likely, and it
eannot ren=unably be assumed that most of these points have probabil-
ity zero while some few others have finite probabilities,

We have eneountered a difficulty which, it is to be pointed out, s
purely fozienl. From a practical point of view the difficulty is obstured
by the [ ihat we could not actually distinguish between a deviation
of .5 ineh and one of 500003 inch. We are limited by the aécuracy
of whatever measuring device we use, and a deviation ghn be identi-
fied only within a certain interval. Thus if we ca,n"gsikéa’sure only to
within o fiundvedth of an inch, we might measure-adeviation to be
4.26 inches. This would be interpreted to meanythat the deviation
lies somewhere in the interval 4.25 to 4.27 in@e} and might better be
written .20 - .01 to indicate this fact. +X)

The logical problem is met by dealing.vith intervals rather than
individual points,  Let us first exam;iﬁjé some empirieal probabilities
for intervals.  Buppose the rifle isifired 100 times at the target of
Fig. 11, and suppose the target aten is divided into strips by drawi'ng
vertical lines on it 1 inch apart.s Letting the deviations z be negative
to the left of the ecentral liﬁc; suppose the vertical lines are drawn at
&= 41, £2 +3, and*s® on, Now for a given strip, say the one
With 0 < 4 < 1, the filmber of shots in that strip divided by 100 will
be the empirical pro’i;)'zil“)ility that o deviation will be between zero and
one.  We may yabulate a hypothetical distribution of shots and com-
pute the olﬂp\nhll probabilities as in the accompanying table. The

"\

#

¢ ’\‘j > St P Number of shots | Empirical probability

o \ ¥

N hcge g 1 .01

—4 <z < -3 1 -01

-8 << =2 6 L

-2 < g —1 T 13 13

“1<z<0 24 24

0<r<l 27 .'27

l<z<2 16 16

2 <z <3 7 -

3 <z <4 3 -03

{<x<h 2 02
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empirical distribution represented by this table could be plotted by
‘using vertical lines as was done with discrete distributions.  However,
we shall not plot a hine at say the mid-point of each interval hui shall
prefer to use a rectangle with height equal to the probahility divided
by the width of the interval, and with a width equal to the width of
the interval. This is done to Indicate that the probabibily rifers to
the whole interval rather than to any single point i the inferval,
The result i shown in Tig. 14. A
Referring to Fig. 14, we note that the area of one of the rectangles iz
cqual to the ecmpirical probability for the interval eorresponding o it
gince the height of the rectangle iz equal to the prohabgity Tl the
base is one. We shall focus attention on the arcas pagher fhan the
heights. The sum of the areas of all the rcctapgl}:s is one.  For

\\
0.30 :
K7
’..x\"
020 [
»,'“
N3 7010
=i & ——

“hom4 -3 o2 - 0 ! 2 3 p) 5 X
Fie. 14,

R
intervals othéy than those chosen originally, we may also estimate
pmbabiﬁtées. Thus we would estimate the probability that 0 < & < 2
by adding the areas of the two rectangles over that intorval Lo get
43\ To estimate the probability that, gay, —.256 < x < 1.5, we

\‘W?uld compute the area over that interval to get

06 + .27 4- .08 = 41

If a second 100 shots weve fired at the target, we could obtain
ancther empirical distribution, which would in all likelihood be differ-
ent from T;he first though its general appearance might be similar. In
constru‘c_tmg a theory of probability, we like to think of these cmpirical
probabilities as being estimates of some “true’’ probability. o this
er'ld we assume the existence of a curve § (#) such as that plotled in
Fig. 15.  We may not be able to specify the function, but we assume
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that there is some function which will give the correct probability for
any interval.  The probabilities arc given by areas under the eurve,
not by values of the function. Thus

PO <z <1) = [' 1)

and this is Lhe probability that is estimated by the area of the rectangle
over the irderval 0 < 2 < 1in Fig,. 14,

The liction f(2) is thought of as a smooth curve rather than a gtep
function for the following reasons: In the first place it is recoghized
that the choiee of intervals in any actual experiment is purely arbitrary.
In the rifle experiment we could just as well have used inteyﬁa}s 14 inch

£ N

Fal

i\ Fe. 15,

long, or intervals withiend points at 1.2, 2.2, 3.2, for example, or we
could have used intéryals of different lengths—0 to .5, .5 to 1.5, 1.5 to
8, for example. \8d the sleps of the empirieal distribution have no
Darticular sigmj‘ﬁcé,nc.e. Int the second place, suppose we consider two
small inlewdls at o divigion point, say 1.9 <z < 2and 2 <2 < 2.1.
Sinee 1helEae E)nd interyal is farther removed from center than t.he_ first,
we sholld oxpeet its probability to be somewhat smallc‘:r, but it is not
rea‘sén\alble to suppose a deviation is more than twice as lkely to appear
inNtRe first interval, as is indicated in Tig. 14. The smooth curve
glves a more reasonable relation between the two probabﬂities.. Iffl
the third place, experiments with a Iarge number of trials usually indi-
¢ate that there are no abrupt changes in the distribution curve. T}_:qu
if the rifla were fired, say, 1000 times, and if intervals 2{o lnchlmde
were used, 1he steps would likely be much smaller than those of Fig. 14
nd approximate a smooth curve. g )

In genera), a probability density funetion for a continuous vangte
Wil be 4 funetion F(z) defined over the range of the variate, and the
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- range may be finite or infinite. It is often convenient to think of the
* yariate as always having an infinite range; when the range 1+ s tually

et o -

finite, f(@) may be defined to be zero outside the range. The inction

" must be positive or zero, and the area under the eurve must b one.
Symbolically, the requirements for a density function are

v{a) J) =20

® [ rwa =1

 The probability that the variate x falls in any interval a < 0 i
‘given by the integral O\

| Pla<z<b) = j;bf(:t:)d:r: O

Since the area gver a point is zero (a geometric line hids No wren . it is
customary to define the probability that = has apy.pdrticular vilue to
he zero.  We may, in Tact, afgue that the prob@Bil¥ty is zero ws *llows:
To compute the probability that z will be gemé number a, let us find
the probability for & small interval of widdl2c about a:

X

Pla—ec <z <ate) > f::f fle)dx

The integral i3 equal to 2cf(a’).wijél‘c a’ is & properly cliosen point in
the interval & — ¢ toa + c. {4 point ¢’ is determined by coustruct-

- e .
ing a rectangle of area f a_ J(z)dz over the interval. The top side

of the rectangle will intelsect the curve f(z) at one or more points if
the curve is continuobs; as we suppose it is. Any one of these points
sy be chosen ag.al> o’ is obviously dependent on ¢ and will approach
aasc approai,che}s zero.) Now we shall let ¢ approach zero and define
:»\":.\P(x =q) = 1in(1)P(a. —e<r<q+teo)
O = lim 2ef(@’) = 0
'"\3“}’6 have defined an interval by the expression g < z < b, hut we
.quld equally well have used a <z <bora<z <bora <z <b
" without changing the probability associated with the interval. A
mamfer of one or two points does not change the probability for a
cogtln}lous variate because the probability associated with d single
point is zero. In fact, a denumerable set of points could be omitted
from the 1}1t-ei’val without. affecting the probability associated with it
In .speelﬁc ideal situations, we may be able to say whal Lhe exact
funmflon f@) s, just as we did in dealing with & pr.iori probahilities.
But in practieal situations, f(z) will ordinarily be unknown.
T2



PROBABILITY FUNCTIONS FOR CONTINGOUS VARIATES §4.2

Any pesitive function over any arbitrarily .chosen range may be
regarded :++ . densily function for some hypothetical variate over that
range, provuled the funetion is multiplied by a constant which will
maike thi: integral of the function over the range equal to one. Thus,
3 + 2u, Tor vxumple, may he made a density funetion over the range
2 <uw < i Sinee

f (3 + 2)dz = 18

the following funclion is a density function: N
Sfizy =0 r <2 x'\t\.
-1 . A\ N
= 3(3 + 22) 2<r <4 Ke
=0 >4 ,\u“
£ix)]
Lo
G.50
\'\\.
c & 2 CRE 3 X
x?\w Fic. 16,

& e
I3 . L) . - .
The functmi\t{ obviously positive or zero, and
W\

¢ Sﬁ‘?f(aﬂdx = f2w 0dz + ./;4 83 + 2w)ar + ﬁi 0dx

O) —~0+1+0
fl‘he probability that a variate having this density will fall in the
Interval 2 < z < 3, for example, I8

P2 <a<B) = f;‘ 1{5(3 + 22)dx

=44

The function ig plotted in Fig, 16.
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§4.3 ' DISTRIBUTIONS FOR CONTINUCUS VARIATES

4.3. Multivariate Distributions. Going back to the rifle experi-
ment, we may characterize each shot not only by its horizontal devia-
tion z but by its vertical deviation y measured perpendicularly from a
horizontal line through the center of the target. Suppose o large
number of shots are fired, and suppose the target is divided ints L-inch
squares by means of horizontal and vertical lines 1 inch npari.  We
cotld count the number of hits in each sqnare and compute s empir-
ieal probability for each square. By plotting eolumns with heights
equal to the empirical probabilities over each square, we miglizget a

N
¥ e\
NS ©
N

\&
N
&
result liQéz%hat illustrated in Fig. 17, The volume of a eolumn esti-
mat-csinhe probability that a shot will fall in the square over which the
”thimn is constructed.

)y We shall naturally idealize this situation by postulating the existence
ot a function f(z, ) which would plot as a smooth surface over the
%, 4 plane.  The probability that a shot falls in a given region is reple
sented by the volume under the surface over that region, Une
quarter of such a surface is illustrated in Fig. 18, The probability

.that ¢ and y fall in the rectangular region 0 <z <a 0 <y<b
illustrated in the figure is ’

Fre. 17,

PO<z<a0<y<t) = [*["fa, yiy du 0
T4



MULTIVARIATFE DISTRIBUTIONS - - §4.3

As in the cuve of one variable, we require

fz,y) >0 (2)
[ [ sy dz = 1 ®)
The funetion fz, %) ig ealled the joint density function for z and .
Fixy)

N\

L\

;~’§\ ~

¥

/ ..
L Fro. 18,

As an filustration, blfes:“fﬁnctian 6 —z—yis po?,itive over the
rectangle 0 < x < 28 < y < 4, for exa.mple;.hence it may be used
to define a joint delisity function over that region, Since

{.\;0:.\’5': szzé 6 ~ 2 — y)dy dr =8

The fo]lt_),\:r::m’\g is a density function: :
Oleyy =346 -2 =y 0<z<22<y<t @
M} =0 otherwise
If & and y are random variables having this density, thle I?robablhty
that thoy will fall in the region < 1,y < 3, for example, is

[ [ fw iy de
I

= 3%
76
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§44 DISTRIBUTIONS FOR CONTINUOUS VARIATES
The probability that £ + y will be less than three is
1 {3—=z
P(x+y<3)=ﬁ]j; 166 —x — y)dy dx
= %4

The probability that # < 1 when it is known that ¥ < 3 is
Pl <1,y <3)

Pl <1y <3) = Py < 3) O\
We have already computed the numerator of this expressio'u\,*wqd the
denominator is NN
Ply<3) = [7[7 166 =« = )y dp
_ 5§ ' 3
s o
hence V
. o
Pz <1y <8) = g—/",.%xﬁ
X0 5
The extension of these ideas to the#ase of more than two variates
is apparent. In general, any fungtich flxy, e, « - -, x:) may be
regarded as a density funetion of vandom variables, provided that
| fayagy -z 20 ()
[—nof—w T f—uwﬂxli Ty, -, mdnidas o0 day = 1
¢\
The probability t-hat\sk}aoint (1, 22, - - -, 2x) falls in any given rogion

. o’f the k-dimensiq{fa;l‘space 18 obtained by integrating the density [une-
“tion over that vegion.

The functipn”
Oy
N S vy w2 = 6vma, 0 <@ < 1 (6)
“\fj." =0 otherwise

) 3

obability that a point falls in the region x; < 14, xy > 14 is

_ f®f* fa rig :
Pl <Kw> 1) = [*f* [ 2% 1, 2, v, w0y dis dza s

= L o o t6wsarges doy duy de do

=§6

44, Cumulative Distributions. Since in the case of continuous

variates the probabilities are given by integrals, it is often convenient
) 76

\’1")& & density function since it satisfes the two requirements. The



CUMULATIVE DISTRIBUTIONS §4.4

to deal with the integrals of the densities rather than the densities
themselves. Lot f(2) be a density function for one variate (such as is
plotted in Eig. 15, for example) and let

= [*. wa (1)

Thig funetion £{x) is the probability that the value of an ohservation
will be Jess than x. Thus
Fla)y = Plz < q) (2N

F(z) is culled the cumulative distribution function of x, or mmp]‘v ‘the
cumulative distribulion. The graph of a cumulatwe dlStI‘l:butl()Il

Fx)

AN\
)

Fia. 19,

function is ithistratedQ i Fig. 19.  Any function F(z) may be regarded
a8 the cumulative {hshlbutmn of a random variable, provided that

Vs ‘,o

& F(z) is a nondecreasing function (3)
& F—e) =0 @
\) (5)

) F(wo) =

A .
},%n the cumulative distribution, one can find the density by :
d:fter{'ntla‘rmg it:

e

M@ (6)

f@) =

The probability that x falls in an interv ala <2 < b is, in terms of the
Cumulative distribution,

Pla <z <b) =Ple <b) — Pz <a)

— F(p) — Fla) @
ki )



§44 DISTRIBUTIONS FOR CONTINUOUS VARIATES

Referring to the example at the end of Sec. 2, where

) = X3+ 2%) 2<x<4

_/JLQW = 0 otherwise
¢ find

Flg) =0 <2
= [: Yg@ + 22)dz = Mgle? + 30 — 10)  2<w <4
_ 1 2> 40N
Fix) ":\
:..\\ o
« \J/
10 :

0 t

and the probability is, ()"
P(2?‘> < 3) =F(3) - F(2)
\,, = g@+4+9—10) -0
O - 5
The fugmﬁaﬁ' is plotted in Fig. 20.
quzpe cral variates the cumulative distribution is defined gimilarly:

L
Y

E@ s, - @)

3 &1 aFg
\’ = f—m f—uo Y f_x:f(tlr oy =+ -, tk)dtkdik—l cordh (8)
Vﬁ'here‘f ($_1, 2, * * ¢, xa) Is the density. The value of the cumuls-
tive distribution at the point (ay, s, + - - , az), for example, is the
probability . :
P($1<61,$3<G2, e ,$k<ak) =F(ai, &2y * v " ;ai'»') (9)

A'ny .funt_:-tion F(@y, 22, » + « , 2:) may be regarded as a cumulative
distribution of ¥ variates, provided that
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Flxi, 22, + - -, 2:) is nondecreasing in every variate (10)
F(oc,o:,"-,oo)=]_ ' (11)
F(Sﬂ;, Tty Ty, ".;xfc).=0 (12)

and this last condition is intended to indicate that F vanishes if any
one of the vuriates approaches minus infinity. Given the cumulative
distribution 7, the density may be found hy differentisting F with
respect to each of its variates:

4 & a O\
Tp, Ty 0 ) = e—— v F(xy, Xe, 132
Jlaz, ) ) dry 9z dxy (@1, 22, » ) (\:\)
A
(”}5
3 4 ' 2
{0.4) (24) )
5
P\
2 5 AT 8
(02) A 22)
™
| \ \\\ ' [ 7
2\
¥e \d
Fia. 21.

i"\‘bt
N
Tailly at-‘nﬁ,}c a cumulative distribution for two variates, we may use
the del@i,t}"given in equation (3.4):

flo, ) =14@ —zs—y 0<3<22<y<4 (14

= 0 otherwise

There are nine regions in the x, y plane fo be take.n accouyt of in defin-

g F(z, 4); the nine regions are indicated in Fig. 21, in which ﬂﬁe

t0ordinates of the points of intersection of the l{nes are given. ('F e

left vertical line coincides with the y axis.) This complication arises

®Calise of the piecewise definition of f(z, ¥). We could simply state
79



§4.4 DISTRIBUTIONS FOR CONTINUOUS VARIATES

that
Flz, y) = f_: f_"m f(s, i)dt ds (15)

but & more detailed characterization of the funetion will he required
if it is to be useful. In region 1 of Fig. 21 f(x, ¥) is zero; hence

Flx,y) =0 <0,y <2

In region 2, although y is greater than two, we have x < 0, s0 tha{ 115}
is still zero sinee f(s, {) never becomes positive over the rangé\of inte-
gration, The same is true in regions 3, 6, 7. Torax, yin J'@g?f’n‘n 5, the
integrand is not zero when 0 < s <z, 2 < ¢ < y, and 1{6‘11&\11

S

Fa,y) = [ [/ 156 — s = ot ds R
=1 . y? /
- 3o -o0-n %1l
= Yoaly — (0 —y —2) NO<e<22<y<4 (16

For any point in region 4, the integrand in (15) is positive when

~

0<s <z 2<t<4;hence o

-

F(z, y) =L f * 15, Ot ds

and this integral may h@j’.&)mput-ed by putting ¥ = 4 in (16) to get
F(xf'y9'>\l/§$(ﬁ - x) C<a<2y>1
Similarly, m{eghms F(,y) = F(2, y) when z > 2, so that
ED = KO -DE -y e>22<y<d

and .Lri:region 9, F(z, ) = 1. Combining these results,

'\
\’F‘@,"y)=0 < 0ory <2
=MUexly — D10 —y—2) 0<z2<22<y<4
= Yx(6 — z) 0<a<2y>4 (17
=Xy -8 -9 T>2,2<y <4
=1 T>2 >4

The funetion is plotted in Yig, 22.
The probability that a point

G <2 < by <y < by,

distribution as follows:

(7, ) will fall in any rectangle, say
may be written in terms of the cumulative
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CUMULATIVE DISTRIBUTIONS 844

Play <& <in, as <y < by) =Pz <byy <by) ~ Pz <ay, y <by)

—P(:r:<b;,y<ag)

TP <a,y < )

= F(bls 62) - F(alx bﬂ) - F(bh az)

+ Flay, e2) (18)

Thus, in the ahove cxample,

PO <w < 1,3 <y<4) =P, 4~ F0, 49 ~ F(1, 3) + F(0, 3)
%~ 0— % +0

I

=14 X
AN
¥ /7 £ 2o SN
Flsy) 6 a4
4
: Y,
a4
4 LI7 7
3/ N ol L7 7
(L] O/
L .
v ~
// e :
// ~~.’
2 3 A~ s 6 7 8 x

N T, 22,

These distributions cah become quite complex for several variables,
and in faet, many ipdpertant problems in applied statisties remain
nsolved merely Betaise the integrations required for their solution
e 100 complegit6 perform. Modern developments in high-speed
Computing m{éhfﬁes promise to remedy this situation within the next
fow years. o\

_ T this 8ok we shall ordinarily use small letters to denote probabil-
ity denily functions and the corresponding eapital letters to represent
thethgumulative f orms. Thus,

or if the variate is discrete,
G@) = ) 9@

IE.%Q..WQI_'CI density will refer specifically to g(x), while the phrase cumu-
\E?me stribuiion wiil refei"-épéciﬁcﬂéﬂ.‘}; to G(x). The word dasz?_fa.l.a.i_;twn
it | _

Q!



84.5 DISTRIEUTIONS FOR CONTINUOUS VARIATES

will be used as a more general term and may refer to cither the density
or its cumulative form.

4.5. Marginal Distributions. Associated with any distritnilion of
more than one variable are several marginal distributions. bl Sz, m
be a density for two continuocus variates. Wo may he interested in
only one of the variates, say . We thercfore scck a funciion of z
which when integrated over an interval, say a < & <D, will give the
probability that z will lie in that interval. In the z, y planc such an

N

Y

A\, ¢
2\

S
o > 3
N
X

@

"\ Fre. 23.

ir.kterva-l corresponds to a.g;grip as illustrated in Fig. 23. The syecifica
tiome <z < bis sa,%éfred by any point in the strip; hence

AT

\P(a <z < b) = Lb f_.: flx, ¥)dy dx o)

Whatever:p\h}épeciﬁcation on z, the limits of integration for y are — 2
to + woigmawe may define a function, say

.»\1"%?":; Jiz) = f_: flz, y)dy @

\a}la this funetion is the required marginal density, since '
Pla <z <b)= f:fl(a:)dx @

for any pair of values a and b. Similarly the marginal density of ¥ ¥ |
) = [7 s, pde )

In general, given any density f(2:, &2, * * - , 2x), one, may find tb¢ Z.;

marginal density of any subset of the variates by integrating the fun¢
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CONDITIONAL DISTRIBUTIONS §4.6

tion with respect to all the other variates between the limits — o and
+o, Ul the marginal density of z;, 2y, and x4, for example, is

- faszy e, )
=[] [ e s desdas - - e, (5)

Referrivg to the distribution defined in cquation {3.4), the marginal
dengity ol o is

. - ..«.\
hiey = 7 fa, gy —w<r<w
.Y
= [l —z-pay 0<s<z O
=143 — =) 0<az< 2
=0 z <0 01;_;?\’> 2 (6)

The cumulative marginal distribution is éésil&fpund if the cumula-/
tive distribution is given.  Ior two variables, the cumulative marginal
distribution of  is o)

Fiw) = [* [ 16, y’qu.“ézé; Z 7, fitzia )

N

= F('ti CC) .~v":'

e

Thus we ncod only let the yatiable in which we are not interested
become: infinite in the joint{umulative distribution.  And in general,

fF(zy, 20, - - ¢, 2z) isack-variate cumulative distribution, the cumu-
lative marginal dist-ribm}tion of i, %1, T4, for example, 18
F124(.’1}'1, ’\;é};*,“:’sﬁl) = F(.’L'l, Zg, o€, dy, ®, 77, C-O) (8)

In our specifig &8ample we may find the cumulative marginal distribu-
tion of x h)&ﬂfegl‘ating filz); thus

N\ y i) = [° fuoa

N

) =10 ‘ z <0
=Lp6—2) 0<z<2 (9)
=1 x> 2

The same rosult is obtained by letting ¥ become infinite in . v
given by cquations (4.17). . o
46, Con(ilitional ]gistri%:'utions. We shall consider first a blva'rlat?
density, say f(z, y), which might be erI'BSB_nted b_y thehgff.chrsd
Fig. 18, for example. Suppase a point: (z, y) is drawn (a shot is fi
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§4.6 DISTEIBUTIONS FOR CONTINUOUS VARIATES

ab a target, for example), and suppose the second variate ¥ is observed
but not the first. We seek a function, say f(aly), which will give the
density of « when ¥ is known; i.e,, a function such that

Pla <z <bly = [l (1)

for any arbitrarily chosen ¢ and &.

If we change the above problem so thal it concerns probiabilitios
rather than distributions of continuous variates, we mayv selthe
definition of conditional probability given in Sce. 2.7. Thus (g Inay

compute (assuming ¢ > 0) "
b fyte . U

N T

;M—c f('ir(t‘ﬁ{!" LR

e
i f,m\ff"-'r Dele els
- The denominator may be written in terms of &e marginal density of

Y, say fo(y), as \ 4
#+e S 3

y—c fz(f«)dt: "/

Pla<s<bly—c<t<y+e =

¥—c

and this is equal to 2cfa(y", wh(’zr’éi’y" 'is some value in the interval
¥ —ctoy +c. Similarly the Rufterator of {2) is equal to

EYL s

where ¥’ is some pojn\h\m the interval y — ¢ to y + c Ience the
probability is >
\¥;

N\ . b '
PGRE < by 0 < WACERL
GEF < me<t<yto -t

Koy
Now Wg;ghall let ¢ approach zero. Since ¥, ¥, and ¢ are all in the
1ntinyﬂ§1'y — ¢toy + ¢ and must remain in the interval however small
c\lﬁ?gomes, 1t follows that they must ali approach y.  Hence the limit
of ¥8) as ¢ becomes ZErQ i

(3)

i

[ 165, pds

Pla <x <bly) = e (4)

Since this relation holds true for any o and b, it follows that

faly) = I—%(ﬁl (5)
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By similar reasoning, if fi(z) is the nearginal density of z, the condi-

tional deusity of y given 2 is

Iz, ) '
fylz) = ==
=) i) (6)
The tunciion f(x|y) is a function of one varate x; y issimply a param-
eter and will have some numerical value in any speeific conditional
density. Thux fa(y) is to be regarded as a constant. The joint
density f{x. v plots as 4 surface over the %, y plane. A plane perpen-
dicular to ithe x, y plane which intersects the z, y plane on the:lies
¥ = ¢ will interseet the surface in the eurve flz, ¢). The a.rea.quer
S S e s € N\

this curve is 2N\

f_: Sz, e)dry = fg.(?)/: : ‘\

hence if wo divide f(x, ¢} by fafe), we obtain a densitym@étion which is
precisely fio ). \Y

For the purticular function RN
ooy =Y~z ~p) 0<z&l2<y<4
=0 otherwise
we have [ound in the preceding secf;iqli;tﬁa,t the Iﬁ'ti.fginal density of
is ™ '
filz) = 4BRY  0<z<2
= 0.2 otherwise

In view of (6} the conditi\dﬁ;l density of y for fixed # is therefore

(3 —x)

Conditional gisfibutions arc defined analogously for multivariate
distributions.¢\Phus for five variates with a density f(zs, 72, zs, ©4, xf’.) !
the conditﬁi;)%]' density of 2, ¥s, €4, given specific values of &3 and 25, Is

N . Jlz1, @2, T3, By, Ts)
~O Flan, @e, 2alws, ms) =" 0003

e s
= Gt 2 <y <

2
NN

) 3
Whert fu;(z; ;) represents the marginal density t}f 3 and x5,

4.7. Independence. If the conditional den51.ty fzly) does not
invelve y and if the range of the conditional den’s%ty does not depend
O y, then & is independent of g in the probability sense. Suppose
that this is the case and that we represent f(zly) by g(z). Since, from
Sec. 6,

z, y) )
faly) = o) = 50 1)
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§4.8 . DISTRIBUTIONS FOI CONTINUOUS VARIATES

it follows that .
z, y) = gx)faly) (2)

hence the joint density of  and ¥ is the product of two functions, one
involving z only and the other involving y only. If we infegiale (2)
with respect to i over the whole range of y, we find that gz is simply
the marginal density of z. Thus we may stute:

If two variates x and y are independent in the probubilily seuse, then
thetr joint distribution is equal to the product of their marginal il tsfribu-

" feoms. \

The converse of this statement is also true.  That Is, if Jlr, dn can be
factored into two functions, one involving z only and the etherinvoly-
ing y only, and if the ranges of z and y do not depend en"ench other,
then z and y are independent in the probability sensdy |

In general, if the conditional distribution of amsilbs;ct.. of any sct of
variates is independent of the remaining fixed wathahles, then thai sub-
set is said to be independent of the remaining variables in the prob-
ability sense. The function defined in equition (3.6) provides an
Hlustration: O

Flay, x, Ty, Te) = lﬁxlxzxﬁx,’f“ o< x; <1 forall £
=0 N ’ otherwise

The marginal density of, say f:ri-j and x, is

Jas{zs, 24) ﬁﬁ_: f_: Jflzy, 29 Ta, 2aide: drs
X\
"¥4$2$4 0<$2<1,0<$4<1
Q@ = 0 otherwise
Hence the cg:{di’tiona*l density of 2; and z, is
.«'\.‘.
\,\I(wl, wolTy, w) = dvzs 0 < g < LOo<z <1
N =0 otherwise
’H}ls function and its range do not invol
\ffmables (1, 23) is independent of the
sense. In fact, all four variates of t
independent ag may be ded
be factored into four funct

4.8. Problems

ve Tz and x4, so that the pair of
pair (z2, ry) in the probahility
his distribution are mutually
uced from the fact that the function may
ong each involving only one of the variates.

L If f(2) = 2 when 0 < 3 < 1 and '
1 00 < nd zero otherwise, find the prob-
ability that {6} z < M, ) Y < 2 <Y;le)x > 3 given r > f/)
e +%



PROBLEMS 84.8

2. Delive a density funetion using the funetion z(2 — &) over the
range 0 <7 ¢ < 2. Find the probability that ¢ < z < b if .

O<a<b<?
fa<0<2 <0

3. If fla) = 32® when 0 <2 <1 and zero otherwise, find the
nuraber a such that  is equally likely to be greater than or less than a.
Find the number b such that the probability that z will exceed & is
equal Lo 05, ~N

4. A variate & has the density f(z) = /2 when 0 < z <2 ahd
zero otherwise. I two values of 2 are drawn, what is the prebahility
that boti: will be greater than one? If three are drawn, what is the
probability that cxactly two will be greater than one? N '

5. A variate z has the density f(z) = 1 when 0 ("g} <"1 and zcro
otherwisc. Determine the number g such that the"p}obability will be
9 that at least one of four values of z drawn atrandom will exceed a.

6. Suppose the life in hours of a certain ’kjtlidfof radio tube has the
density f(x) = 100/2? when z > 100 and,aprd when £ < 100, What
is the probabilily that none of three sgeh tubes in a given radio set
will have to be replaced during the fizst 150 hours of operaticn? What
is the probability that all three .@f;’r,he original tubes will have been
replaced during the first 150 houys?

7. A machine makes boltsaith diameters distributed by the density
Jz) = Kz — 24)%(x —,2{%()2 when .24 < z < .26 and zero other-
wise. K i3 the numbérfwhjch makes f__: fleydz = 1. Bolts must be
serapped if their diameters deviate from .25 by more than .008.  What
proportion of the Jolts may be expected to be scrap? '

8. A bomking plane carrying three bombs flies dircetly above a
railroad tindl! It a bomb falls within 40 feet of the track, ’_Lhe track
will be suﬁ\ciently damaged to disrupt traflic. Wit-h & eertain bomb-
sight, t\}{é;density of points of impact of a bomb 18

A% Fz) = (100 + 2)/10,000  —100 <z <0
' = (100 — £)/10,000 0 <=z <100
=0 elsewhere

% represents the vertical deviation from the aiming p?int, which iS‘ t'-he

track in this case. If all three bombs are used, what is the probability

that the track will be damaged? 1t bombs

9. Referring to the above problem, the plane can carry elght bom f_’

of & smaller size, but one of these must hit within 15 feet of the track
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§4.8 DISTRIBUTIONS FOR CONTINUQUS VARIATES

to damage it. Should the lighter or heavier bombs be used on this
mission ?

10. A country filling station is supplied with gasoline onee a week,
1f its weekly volume » of sales in thousands of gallons is disivibuiied by
fl@) = 3(1 — 2)%, 0 <z < 1, what must be the capacity of il tank in
order that the probability that its supply will be exhansted i given
week shall be .01?

11. A batch of small-caliber ammunition is accepted as sotisfuctory
if none of a sample of five shots falls more than 2 feet from 1 he . dohter
of a target at a given range. If r, the distance from the Lurgey eenter
of a given impact point, actually has the density A

£\
2pgt ,~.:’~‘ 3
== o

N\
0 <r <3, for a given bateh, what is the prokability that {he batch
will be accepted? A

12. T f(z, ) = 1when 0 < 2 < 1, 0 <ix 1, and zero orherwise,
find the probability that (a) z < 14, p¥ ¥y izt y < 1 i)+
> LDr>2y Q> N PP < (e =y (be >
giveny < 24; (1) z > y given y > g%

713. If flz, y} = =@+ when 230, ¥ > 0, and zero otherwize, find
Pe>1);Pla<z 4y <b)kd < ¢ « b; Plz < ylz < 2y

14. Using the distributiof ‘ef Prob, 13, find the number @ such that
Plety<a)=134 ¢\

16. Tf three points™ (@, 3) are drawn at random where z and y are
distributed by the finction given in Prob. 13, what is the prohability
that at least ong & them will fall in the square 0 <z < 1,0 < y <17

16. A mac};%i(le’makes shafts with diameters x, and a sccond machine
makcsl b}g\h@gs with inside diamcters ¥ Suppose the density of z
az}d y i@y y) = 2500, 49 < ¢ <« 81,51 <y <« .53, and zero other-
Wise. +4 ‘bushing fits a shaft satisfactorily if its diameter excoeds
thii,bf t-he_ shaft by at least .004 but not more than 036, What is
%Qc:pr(}T?abllit-y that 2 bushing and shaft chosen at random will fit?

17. Find and plot roughly the cumulative distribution for the dis-

tribution given in Prob. § Use the 3 P .
= U v 1 - : d
P(150 < 2 < 250). umulative distribution to fm..

: l<z<23<y<d).
ensity Dif z for the distribution of Prob. 13:
(b) by using the rosult of Prob. 18 {0 get the

ribution, then differentiating the result.
a8

719. Find the marginal d
{a} by integrating out 13
cumulative marginal dist
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20. Find the conditional density of 2 given y for the distribution of
Prob. 13. Whatis the PO <z < 1|y = 2)7

2L Hfirnyl = -0 -2)/04+z+y)»whenz >0, 5> 0,
and zero “fowhere, find F(z, y), fi(z), Fi(z), flyle).

22. Il i, iy = 24y(1 — z — o) over the triangle bounded by the
axes ancl The line ¢ + y = 1, find f(zly).

8. I fir, y) =32, 0 <y <z 0<z <1, find the conditional
density of :

24 Tt firy) = 32%/9% 0 <z <y, and fuly) = oy, 0 < g < 1, find,
Ple = 1,0,
728 T8 flo, y, 2) = 8ayz, 0<s <1, 0<y <1, 0<z<ihnd
Plz <y 0 2). O ’

26, I fir) = 1/(1 4+ 2)% = > 0, find the density of :5:~.’g‘iven that
x> 1. D

2T. It fle, ) =1, 0 <z <1, 0<y<1, findg-$hé conditional
density of » and ¥ given that ¥ < 2, a > 0. !

28, 1§ fix) = 1,0 < 2 < 1, find the density,ofy = 3z + 1. (Find
first the cumulative distribution of y and theh differentiate it.)

29. It /i) = 2ze=* z > 0, find the dehgity of y = 22,

30. i flz, y) =1, 0<a <1, 0gy<1, find the density of
=3+ oy N

Bl U flr, y) = et 3 > 0, ;;{7;;0, find the density of

P4\

PR e )

32. If flz, y) = dygfe==H" g >0, y >0, find the density of
P> VAT g O o

33. I f(x, yl\~'=\4:cy, 0 <z <1,0<y <1, find the joint density of
W= :1:2J o=y

34. If j{‘;};} y) =3z, 0 <y <z 0<z<1, find the density of
¢= oy .

BN f(2) = (1 + 2)/2, —1 < z < 1, find the density ofyl = z2

86Y1F f(x, y) =1, 0 <z <1, 0 <y <1, find the density of z
deﬁ”edb}’?z=x+yifx+y<1,andz=x+_y—. ?1fx+;=fr> I.
7387 If flz, ) =&, >0, y >0, find th?, joint density of
=g+ yandy =z Whatis the marginal density of »? ‘

38, If fla, g, 2) = ¢ @tvtd £ >0,y>0,2> 0, find the density of

their average y = (.’L‘ + ¥ __|__ Z)/3 ,
I Iff(z, ) =42(1 — ), 0<2 <L, 0<y <], find the density

of z given that y < lg.
89



§4.8 DISTRIBUTIONS FOR CONTINUOUS VARIATES

40. If zis distributed by f(z), # > 0, find the density of y = wx? + b,
a >0

41, 1f x is distributed by f(z), — o <2 < «, and f y = »(z) i3
any increasing function of z [i.e., y{x1)} > y(zd) when z; > w4, find the
density of ¥.

8. If flz, y) = g@)gly), 2 > 0,y > 0, find Plz > 3.

A48 I flz, y, 2} = g@)g(ylg(e), 2> 0, ¥ > 0, z > 0, whut is the
probability that the coordinates of a randomly drawn point e, y, z)
will not satisfy citherz > gy > zorz <y < 2

44, In which of the distributions defined in I’mlw 21, @2% 31,

32, 33, and 34 are the variates independent in the prob: l|)| ~ense?
;»g )
N
O
A
N
iwl’
N
«:\\‘
N
Fa \ -
O
(\s
o \ 4
NGO
§ >
t;\wl
. W
\‘w
O
Qe
AN
o
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CHAPTER 5
EXPECTED VALUES AND MOMENTS

5.1. Expected Values. The expected value of s random variahle
or auy Iunction of g random variable is obtained by finding the ayés
age value of the function over all possible values of the variablea To
consider o speeifie example:  If three coins are tossed, the djst{'ihtﬁion
of the number of heads that appear is the binomial « M

-
7N
< R

=) (1) c-0123 ®

For a specific value of T, say x = 2, we think phf{2) = 3¢ as the rela-
tive frequencey with which two heads will af dal in a large number of
trials. Thns in 1000 trials we expect no\Beads to appear in about
1000 X 14 = 125 trials, one head to appear in 1000 X 3¢ = 375 trials,
two heads in 875 trials, and t-hreq heids in 125 trials. Now let us
find the average number of heads in the 1000 trials, The total number
of heads is cxpected to be : :

125 X 0 + 375}5’"&:-{- 375 X 24 125__'_>< 3 = 1500 .

: x\" . .
I the 1000 frials ; thumhc average 1s expected to be l‘.5 heads per
trial.  This is the gzpecied value, or mean value, of z. It is clear that

the same result would have been obtained had wéqmerely mult.iplied
all possible vs 11{\6 of z by their probabilitics and added the results;

thus, % .
WO X6 IXHF2XEE XY =18

The"egip\écted value is a theoretical or ideal average. We do not actu-
ally ?;pe(:t’ T to take on its expected value in a given trial; mn fact ’F-hat
would hp impossible in the present exan.lple. However, we mlg}:llt
feasonably expect the average value of 1;1 a great number of trials
%0 be somewhere near the cxpected value of 2.

These considerations lead Es to define in genera.l' thg expect-cd value
of & disorete variate as Szf(z), where f(z) is the distribution of‘ x ang
the sum is taken over the whale range of z. Th'? SymbO% Biz) U?B
to denote the expected value of . Thus in the illustrative cxample
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§5.1 EXPECTED VALUES AXD MOMENTS

3

E@) = Y zf(z) = 1.5

r=0

In general, we shall define the expected value of any funciion of z, say
h{z), as

Elh(z)] = ¥, Ma)f(x) (2)
Where the sum is taken over the whole range of z.  Thusx if
hz) = 2% + 1 O
and f() is a8 defined in equation (1), . O ’
B+ 1) = 3 6+ s @ P

=36+ 2X 3 +5 X 3 4390 x I{ = |

Similarly for several discrete variates z;, Ta, (XY, xy, with distribution

Sy 25, - - -, 2), the expected value of aby Tunclion % of the vurintes
is defined to be v
E[h(‘rl! Ty ~ - - ka)] {”:; )
=% NhERE s v @)
T1 Xz Tk 3 d

where the sums are taken/6ver the entire range of ench variare,

For continuous Val‘i&t'gé’g.\we define expected values in terms of inte-
grals rather than sumig™ If = has the distribution J(z) and h(z) iz any
function of 2, ther()

NY  Eh)] = f ® h()f(@)dx (4)
'\n' — 03

This deﬂe}ﬁgﬁl is suggested hy the definition for discrete variates given
in equagten (2) together with the definition of a definite integral us the
limit'ef & sum. Lot the z axis be divided into intervals of length
z&qi;;"ﬁf =0, £1, £2, - - ) and let ¥; be a point in the interval A%
“sueh that f(z))Aw equals the area under flz) over Az, "Then an
expected value of k() may be computed by regarding = as a diserete
variate which can take on only the values ! with the probabilities
Fzh)Ax,, This expected value is

DR ICH Ve

= — o
according to equation (2).

i The limit of this sum as all Az; approach
zero will essentially remave

the restriction that » be discrete, and the
62



MOMENTS § 5.2

limit is the integral given in (4). Similarly for several continuous
variates, we dofine

Blh{xe, o - - | 13)]

= [ e mf e - 2des
ez (5)

We shall uvoid confusing the expected-value notation with thefunc-
tional nidution by never using the letter E to represent & function.
£{g) will adways represent the expected value of g, never a funetioh
E of y. In the remainder of this chapter we shall not distinguish
between disercte and continuous variates. Fxpected  valficdwill
alwayy he given in terms of integrals, but it is to be understgodthat the
integrals are to be replaced by sums in specific probl@;iﬁ'ﬂvhjch deal
with discrete variates. : LV

Two simple properties of F are worth noting, Iz} distributed by
J(®), if ¢ is any constant, and if g(x) and h(z) aré'any functions of z,
then LD

Eleg(@)] = cElg@3" (6)
Elg(@) + hiz)] = Elg®)+ Blh(o)] 7)

These two relations follow direc.t:lyj;fr(;m the corresponding relations
for integrals: )

I D
Ho(x) + h)ifaddr = [g@)f (2)de -+ [h2)f(e)de

Of course (6) and (7) réhanin true if the single variate z is replaced hy a
set of variates T, Tg “ L, Tk
5.2. Momentsh\The moments of a distribution are the expected
values of the ppwers of the random variable which has the given dis-
tribution, Q‘iﬁé’rth moment of z is usually denoted by u; and is
N\
D i = E@) = [°, @f@da ®

4 0\’ ' 3
Thq”\ﬁ{'ét moment u] is called the mean of z.  The moments about any
arbitrary point a are defined as

B —ayl = [, @ — ayf@de )
and when ¢ is put equal to the mean, we have the moments about the
mean, which are usually denoted by g

b = Bl — )] = [ (& = w)fe)dz (3)
93



§5.2 EXPECTED VALUES AND MOMENTS

We have
’

[y

= f_«; af(xyds — 1 f_: fleydz

= —m =0 (4)
and

w= [ @ - DY)
= f_: (€2 = 2zu] + (D)) f(x)dz

=y — 2uq1 + (u1)? R
= ph — (u1)® R\ D ()
This second moment about the mean is called the earighed”of »

The mean value of a variate locates the conter of H,‘s st ribution in
the following sensc: If the x axis is thought of axd Mar with variable
density, the density at any point being given bynfed), then it i= shown
in elementary caleulus that the value 2 = gAdd the center of gruvity
of the bar.  Thus the mean may be though ¢ of s o contral value of the
vartate. For this reason it is often refertedl Lo as a location purameter
—it tells one where the center of the ‘distribution (in the corder-of-
gravity senge) lies on the x axis, ",thcr central values are sometimes
used to indicate the location ofs a distribution. One is the median,
which is defined as the point “af which u vertical line biscets (he area
under the curve f{z). The\icdian is therefore the point u’, sy, such
that

".ﬁ\t}(x)dx =4 = [ fo)ar (6)

. Another central Whlue fov densities with one maximum is the mode,

- Which iS,_ﬁh_elmhﬂE._}KhiQMx) attains its maximum. One could
easily deyizd Other central values; these are the ones commonly used,
and czf.'t'he three the mean is by far the most useful. We shall often
eD}DEOY' the symbol p without the prime or subscript to denote the
méal.

N\ T%le variance 2 of a distribution is o measure of its spread, o diss
persion.  If most of the area under the curve lies nesr thoe mean, the
variance will be small; while if the area is spread out over a consider-
abl'? range, the variance will be large. Distributions with ditferent
Yarlances_s:re plc_ut-ted in Fig. 30 in the following chapter, The variance
is pecessarlly positive, gines it is the integral or sum of positive quan-
tities. [t will vanish only when the distribution is concentrated 2
ome point, Z.e., when the distribution is discreto and there is only one
possible outcome. The symbol ¢* is commonly used to denste the

94
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MOMENTS § 5.2

vartance; the positive square root of the variance, o, is called the
standard deniation,

We shall look a little further into the manner in which the variance
characterizes the distribution,  Suppose fi(z) and fo(x) are two densi-
ties with the same mean such that

[,:t“ [f1(z) — folz)ldz > 0 -

N

£i(x)

'\\\“' - Fic. 25,
for e\a',es’\;*’:i'a.lue of &. Two such densities are illustrated in Flg 2¢.1.
It ﬁ)ﬂ)’é shown that in this case the variance of of the first density Is
smallor than the variance o} of the second density. We shall not take
the time to prove this in detail, but the argument i roughly this: Let

glz) = filz) — f2(z)

where f1(z) and fo{x) satisfy (7). Sinece f# . g(x)dz = 0, the positive
area between g(z) and the z axis is equal to the negative area. IFur-
thermore, in view of (7), every positive element of area g(z}dz" may

be balanced by a negative element g(z')dz" in such a way that 2"
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§6.2 EXPECTED VALUES AND MOMENTS

is farther from p than 2’. When these elements of uren are imultiplied
by (x — »)? the negative clemenfs will be multiplicd by Luger factors
than their corresponding positive elements; hence

[, @ = wr@ax <0

unless fi(zx) and fo(z) are equal. Thus it follows that ¢F < &%

The converse of these statements is not frue.  Thut is, 1f one s told
that ¢} < ¢, he cannot conclude that the corresponding dipsities
satisfy (7) for all values of g, though it can be shown that {71 niwst be
true for certain values of 4. Thus the condition o7 < of dogaulpt give
one any precise information about the nature of the g‘(l.!}?rwpumling

Ny

\\ N Yo, 28,

distributions, bp@’it“is evidence that f1(x) has more area near the mean
tha.n‘j:g(x), afilléast for certain intervals about the mean., The two
densities imFig. 26, for example, might have about equal variances,
and on(:/ismld alter either one slightly so as to make it have a smaller
. or larger variance than the other.
- ‘Tﬁe third moment gz about the mean is sometimes called o measure
. x;t__._’.E‘E”ym13113171'.‘)’,- or_skewness. Symmetric distributions like thosé in
igs. 26 and 30 can be shown to have w5 = 0. A curve shaped like
fi{z) in Fig. 27 is said to be skewed to the left and can be shown to
Flave a negative third moment about the mean ; one shaped like fo(z)
Is called skewed to the right and can be shown to have a positive third
moment about the mean. Actually, however, knowledge of the third
moment gives almost no clue as to the shape of the distribution, and
“ie mgnt{on it at E_Lll m.alnly to point out the fact, Thus, for exsmple,
the density fa(2) in Fig, 27 hag #3 = 0, but it is far from symmetric-
. 98
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By changing the curve slightly we could give it either a positive or
negative third moment as we pleased. -

While o particular moment or a fow of the moments give little
information about a distribution, the whole set of moments (u!, u},
#y + ) will ordinarily determine the distribution exactly, and for

 this reason we shall have oceasion to use the moments in theoretical
worl.

In upplicd statistics, the first two moments are of great importance,
as we shull see, but the third and higher moments are rarely uséful.
Ordinarily one does not know what distribution function he is W\rking
with in & practical problem, and often it makes little diffexghegAvhat
the actual shape of the distribution is. But it is usuallyvnecessary
to know at least the location of the distribution and to Have some idea
of its dispersion, These characteristics can be estim{ted by examining

£(x) Al Q

Fie, 20
asample dravwn from a set of obj.egﬁ-'s’ known to have the distribution in
question, This estimation prgblein is probably the most important
probler in applied statistigs, and a large part of this course will be
devoted to u study of AN

" Allustrative exampled ®ird the mean and variance of the hypergeo-
metrical distributiony

SEX.)
o \z/\k — 2/ =0,1,2 -,k 8)
SENGTIN

< k

This, ;ﬁjo%lem will illustrate a technique thaf, may be used to ﬁnd. the
HQI\D,('I’H‘LS of a great many discrete d.istribut-l_ons. The first step is to
use'the distribution to determine an identity in the parameters. Smﬂt_’

2f(x) = 1, it follows that

5 62) () ®
“, A\ k—=x k
for any positive integral values of m, n, anfi k. . [Actually, as we have
seen before, the range depends on the relative sizes 0::" , 7, ancll k, b_ut
We can avoid dealing with these details by defining the binomial
’ : 97
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. @ al . .

coeflicient = 7 to be zero when eithor 6 o a0 - b g
b bl{a — B)!

negative.]
The mean of the distribution is
%

; al
p=E) = Y of@
r=10
E
E (m) ( 1 )
. r SNk — O
=2=0 *. W N
m 4+ n ¢\
Jr\‘ i“\\ ”
n . .‘ bl
In this expression z may be canceled with the » in thetnominnior of
m ",\:..
(x) to get \::}\

and we have

(11)

where we have written €he'sum to range from 1 to & becuuse the first
tem"n in (lO) Va-nisl{e?’)\%d may be omitted. Actlually, since we bave
d_eﬁned 2 binomiglepefficient to be zero when its lower index is 1egas
tn.f_e, there woulddie no objection to leaving the limils 0 to k. Now in
t}:n? last expression let us substitute y for z — 1 and factor out factors
which d'@\\n@;‘involve the summation index.  We get

RA\Y m E-1 .
‘..‘:;N o= m— 7
»\),\, (m ;{I— n) yZO( y E—1—y (12)

This sum may be evaluated by means of the identity (9; we simply

replace m b — : i i
gelz mbym —1andk by k — 1 in the right-hand side of (9} to

M:

m_ fm—=1+4mn
(m—i—n E—1 )
k
mk

m -+ n (13)
a8
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To get the variance, wo shall need the second moment

&
wh = ) 2%(z)
z=0
If we substitute directly for f(x), we shall be able to cancel only one
of the &', and the other 2 will remain to prevent our using the identity
to evaluate the sum.  The trick bere is to write 22 in the form

iz — 1)+ =z N\
to get A\
ne
i = Zale = D) + 2af) Ay
* We have already cvaluated the second sum in obtaining th&gncan, and
the same procedure used on the first sum gives » :
k A\
z— D™, " \
Bl on(r )(x) (k—x) R\
[-?; r— 1 = Iz W
) — o)
k Q' ~~"‘

g 'm <\ n
WM
22 m{m — 1) (‘JB‘:}Q) (k‘ _ a:)

=

= 2=2 7o ﬂ)
LS N
_m(m —\_}_)\_2 m— 2) ( n )
B (mq-xun) Z ( ¥ k—2-—-y
ONY y=0

S = 1) (m — 2+ -n)

NSy
&)
SO0 mim - DEE - D) (15)
N T mFn)mta—1)

Adding (13) to this, we get 45 in accordance with (14); the variance
is then ohtained by subtracting the square of (13) from f in aceord-
ance with (5). Thus the variance is
2
o _ _m{m— Dk =1 _mk _( mk )
Tt mmtn—1) mtn \mtn
mnk(m + n — k) (16)
ICEDECEER
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The general method for higher moments is now evident, To pet
the third moment, we would find the cxpected value of
z{z — 1)z — 2)
since this is equal to 2% — 32! + 2x, we have
= 3wy 201 = Elz(z — 1)(x — 2)]

and having evaluated the right-hand side of {hix exprossion. wesgonld
solve for pg, since 44 and ) have already been determind, . Niving
the third moment, we could obtain the fourth by flueding Hn\g\.;l)ected
value of z(z — 1)(z — 2)(x — 3), then solving for o} in

we— By + Tl — 64 = Fla(z — V(e — 200 )
The right-hand side of this last expression is cull;wrf}ﬂ\fv fourth fuciorial
moment of the distribution. The rth factorial widment is
Ba@ — Dz - 2) - &er+ )]

v Hlustrative example: Find the medd"and standard devintion of
the continuous distribution f(z) =2(1 —2), 0 <2 <1 The rth
moment ig N\

. r =":1 e — .
w = By ]; 22(1 ~ z)dx
ON=2 [ @ = ey
S\ 2
r o TEITDCTD
The mean s W&
SO —y =2 _1
. A0 P T e T
and the&htiance is
AN == 211
~O 3X4 9778
Dence

6:3. Moment Generating Functions. When gl the moments of a
dlstn!out-ion exist (L.e., when all moments are finite), it i3 possible to
associate & moment, generating function with the distribution. This
s deﬁn?d as E(e™), where z is the random variable and £ is s continu-
ous variable; the expected value of ¢ will be a function of ¢ which we
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MOMENT GENERATING FUNCTIONS 85.3
ghall denote by

m(t) = E(e®) = f_: ef(z)ds | | (1)

If we differentiate the members of this relation r times with respect to
t, we have

dr “© t- o .
7m0 = [° veyede @)
and on putting ¢ = 0, we find O
dr . f:\t\.
T m(0} = E(x) = 4, O 3)

where the symbol on the left is to be interpreted to' méan" the rth
derivalive of m(f) evaluated at ¢ = 0. Thus the moznents of a distri-
butien muy be obtained from the moment genexating function by
differentiation. A\

If in cquation (1) we replace ¢* by its seriéslexpansion, we obtain
the serics expansion of m(#) in terms of the, ?mments of f(z); thus

N/

m(l) = E(l + 2t %(@ffﬁ%(mf}s.ﬁL o )

1 NN
=1 +ﬂ;£+“2f"{#;£?+ T
e

- E Ry (4)
=T
from which it is a,%'ll?l 'évident that ¢\ may be obtained by differentiat-.

ing m(f) r times ‘an&'then putting { = 0.\ ‘ o
We may illusitaie this technique for finding moments by obtaining

the mean gid variance of the Poisson density:

'..\\3
./ eq” _ R
\”\: f(x) = Z1 z =101 2,
We find
o1 pitg—dg?
m(t) = E{et) = Zﬂ' =1
Pl
v {aeh)
= g‘“ x!
x=0
= g—agas‘

i
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The first two derivatives are
m'(f) = e taele®
m'’(t) = e~"acte™ (1 - ae')
whence
=m0 =a
ur = m”{0) = a(l 4 a)

4 - 1 _ 2: ]
a el +a) — o a ~

The factorial moment generating function is defined as Ky, and the
factorial moments arc obtained from this function in thi Maine way
as the ordinary moments are obtained from ety excepfahd ¢ is put
equal to one instead of zero. This function snmur.ixm’f&:simpiiéies the

problem of finding moments of disercte distributiongd” It iv. however,
of no help in the example used in the preced g Nt tion, Levause the
sum 2¢5f(x) has no simple oxpression.  For t-\h:; Poisson di-ribution:

E(1z) = estt—n .‘;‘\

N\

whence N\

Blz) = ag | =4

Elz(z — 1)3';;:32@«:—1)] = gt
8 t=1

giving the same momentsé¥ before.

Sometimes we shall Have oceasion to speak of the moments of a
function of a random ¥ariable. Thus we may want the moments of
A(z), where hasi.ﬂii.e distribution f(z). The rth moment of Az} is

A/

o) BT = [ h@)Tea @)

."\s.
and a fl}thfbn which will generate the moments is obviously

AN Betrt=y — f“’ M f ()l (6)
N e/ — o

b4, Moments for Multivariate Distributions. The preceding ideas

are readily extended to distributions of several variates,  Suppose

. for example, that wo have three variates (z, ¥, 2) with density f(z, ¥, 2-
The rth moment of Y, for example, is '

EQy) = f_: f_: f_: i, y, 2)dz dy dx (D

Begides the moments of the individual vari ates, there are various jeint
moments defined in general by
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THE MOMENT PROBLEM . 86.5

Bey) = [T 7 7 wwetey aiapa @

where ¢, r, and s are any positive integers including zero. The most
mportant joint moment is the covariance, which is the joint moment
about the meuns of the product of two variates. Thus the covariance
betwecn 2 nnd z is

o= [T e~ B0 - BN, g, Dz dy dx 3)

and there are two other covariances o, and o, defined analogouslyyy
The correlution between two variates, say z and 2, is denoted by\pm
and ig delined by \ N

LEE] g

AN €
[ L)

where o, undd ¢, are the standard deviations of z and"gf.\‘
Also one can define a joint moment generaiing function:
m{ty, by, ) = Bewtevtis)as (5)
Ut is clear that the rth moment of g, for exanbfé, may be obtained by
differentiating the moment gencrating fanetion 7 times with respect
to {y and then putting all the #'s equalito zero. Similarly the joint
moment (2) would be obtained by differentiating the function ¢ times
with respeet to ty, r times “-“ith‘résp'ect to iy, s times with respect to
ts, and then putting all the {'gequal to zero.

6.5. The Moment Problem" We have seen that a distribution f(z)
determines a sot of morhénts (uf, 4, 15, - * +). Onc of the important
broblems of theoreticalstatistics is to find f(#) when the moments are
given. A study of’this problem requires advanced mathematical
techniques, and sfeBhall have to omit it. However we shall prove the
following theqtafn which will be required in our later work: _

If two co@»{ugus densities have the same sel of momentls .tmd if the
dﬁﬁerencg‘é'j: Yhe densities has a series expansion aboul the origin, then the
wo dedsitres are equivalent.

Suﬁi(iiér; the two dg;nsities are represented by f(z) and g{z) and suppose
the serics expansion of their difference is

f(t) '—g(ﬂ:) =CU+I‘31$-}'62:E2+ ..

Fre =

NO'“L:‘ let us consider the integral .
[2 06 — gz = [ et e + o+ - lfe) ~ g@ld
ol — 1) A ealps — ) +

1l

il
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since the two densities are assumed to have the sume moments,  The
function {f(z) — g{x))? is necessarily positive or zero, and s we have
found the area under the function to be zers, we must conelude that
the function is zerc and hence that

flz) = ¢(z)

Under the conditions of this theorem it follows that
If two random variables have the same moment generating funet i, then

they have the same density function. ~
For if the variables have the same moment generating funclion they
necessarily have the same moments. )

'\
5.6, Problems Ao

1. Tf 5000 lottery tickets are sold at $1 each on Ei'S‘_)O()(_} eir, what
18 the expected gain of a person who buys t.hre(}“t';\n,ket.s'.’

2. A coin is tossed until a head appears; whatis the expected num-
ber of tosses? AN

3. A bowl contains n chips numbeted\Tom 1 to #; m are drawn
without replacement; what is the expedted value of the sum of the
numbers drawn? R\

4. An event ocours with probability p and fails to oceur with prob-
ability g =1 — p. Ina singlé’jﬁf*ial, what are the mean and variance
of z, the number of succeggses?'

5. If n trials are mada bf the event described in Prob. 4, andif 2

is the total number g{‘s&cceeses, what are the mean and variance of
x?

6. ¥ind the ;Iréail of the continuous variate = distributed by

ey =
O V2
Ta fi?ind the mean and variance of x if flzy=1,0<2x < 1.
R ‘Find the mean and variance of 252 ffz)y =1,0 <z < 1.
{ 9. Tind the mean and variance of x if

@) =1/E+1)? 0<z< w
10. Show that B(zy) = E@)E(y) when z and y arc independently

distributed.
11, Show that

3—(2:—0.)‘*‘!2’ —w < p <

*

o=y (j) (= 1)ty

i=0
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PROBLEMS 85.6

12. What. is the median of 2 if @) =201 ~2),0 <2 < 17

13. Find 1the moment generating function associated with the
density f(:) = ae™%, & > 0, and use it to obtain the mean and variance
of z,

14. Fine the factorial moment generating function for the binomia]
distributicn, wnd use it to obtain the third moment puf.

15, If x huas the density f(z) = %/2,0 < z < 2, find the rth momens
of 2% "Then show that ¥ = %2 has the distribution

s =4 O0<y<4 \
by showing that y has the same moments as 22, R )

16, Tf fiz, y) = ale-o=tw g > 0,y > 0, find the generating function
for the moments of w = ¢ + y. Deduce the distributiof™ef « from
the form ol this generating function. ‘O

17. Show that if 5 density function f(r) is symmetﬁ‘q\about 8 point,
say b, i, f(b + ) = f(b — ¢) for every value of 2l) then that point
must be the mean of . Show also in this case’ﬂi’&t all odd moments
about the mean must be zero. o\

18. Given the moment generating funetiof m(f) for the moments g,
about the origin, how would one obtain.the moment generating func-
tion for the moments g, about the méan?

18. In place of the moments w/y-another infinite set of constents vy,
called the cumulanss of a distljibuﬁi’on is often useful for characterizing
the distribution function. ,ﬁe cumulants are defined by .t-_he generat~
ing function clt) = log q%ﬁfj’,’ where m(f) is the generating function

el

evaluated at ¢ = 0. Show that vy, = g

for the u, le., vy, ;.%;“
and y, = a*, ’\~\ . —ax 0

20. Tind the-tH cumulant v» for the density flz) = ae™*, » > ,

21. Show ’Qﬁt if M(#) generates the moments about an arbitrary
point b, i.eY |

O Ho) = [ epiaie
\ -

then () — log M (r) will correctly gencrate all the cumulants "X“e‘-’g
the finst. The eumulants of a distribution 'bc.chd v, are thus sai
0 be mvariant under translations of the variate. lants &~

22. It 4 has cumulants v,, show that ¥ = ez haJ-S (?ur[}u a if t.ge ’

23. Show that the correlation between two Vamate? " f 8113'0 nt i)ra
Are independently distributed. (The converse of this stateme

N0t true, as the f ollowing problem shows.)
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§6.6 EXPECTED VALUES AND MOMENTS

24, Let  have the marginal density fi{z) = 1, =38 < & < 14 and
let the conditional density of ¥ be
Jle) =1 z<y<z+1, =14 <z <0
=1 —r <y <l —x,0<x <1y
=0 otherwise

Find the correlation between x and y.
25. Could the function E[1/{(1 4 ix)] be used 1o ;;-{-m-;--@\ the
moments of a variate 27 %\

N
&
A\
AY
&
\V
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CHAPTER 6
SPECIAL CONTINUOUS DISTRIBUTIONS

6.1. Uniform Distribution. The simplest distribution for a con-
tinuous variite is the uniform dengity: O
fo) =2 a<a<g
X)) = '8 —_—
= otherwise N

which is plotted in Fig. 28. The probability that ia.nmo\bééwatjgn will
fall in any interval within a < 2 < f 18 equal to 28— @) times the

aw\/
£ix) D
x i
% \/
L N
A-x PR
=N
K
¢ ZN\J
NS 2 X
Fia. 28,

N\ W

length of the inte xa:\ll The distribution ig particularly useful in theo-
retical statistiesboesuse it is convenient to deal wit-}% maf;hematlca,ll'y.
We are enx\@;réd to deal only with this simple distribution when c.hs-
cussing caggiin properties of distributions in general by the following
thooreqgsy .
"”?;’\ngnsz’ty for @ continuous variaie x may be {ransformed to the uni-
Jorm lensity -
fly) =1 0<y<1

by letting 4 < (F(z), where G(x) is the cumuia.t'it:e’dz'sm'bution of 2 .

It is clear that y must have range zero to one since & cumulative hlS;

tribution muyst vary between zero and one.  We nced only shov; tha

the density of ¥ is f{y) = 1 over that range. Now a va%ue o Cg,; is

determineq by drawing a value of &, say %o, and substituting in G(z)
107



86.2 SPECIAL CONTINUQUS DISTRIBUTIDNS

to get a corresponding ¥ = G(xo). The transformution y - (/(x) sets
up a correspondence between points of the @ axis and points on the
interval (0, 1) on the y axis. To find the probuahility that y lies in an
interval, say ¢ < y < b, we find the values, say ¢’ and &, on the 2 axis
which correspond to ¢ and b, as in Fig. 29, and compute the probability
for that interval (¢, b") in terms of . Thus,

Pla <y <b) =G — Q")

but by definition G} = b and G{a”) = a; henee 2\
Pla<y<b=b—an 0 <a-<h | O\
Y O
10 P W
m’ X’
6 b
K7
-
//}4“ NV
a' ’\»:b: ~

a i‘l?} 29,
Suppose we denote the cumﬁiﬁ%ive distribution of y by #(y}; then
| . .\sj}%) —Fla)=b—a
and replacing b by + Ay and a by y, we get

Ply + Ay) — F(y) _

3 3
N
L )

1

7\
Thc? l}nﬁtnf the expression on the left ag Ay approaches zero gives the
dGT%Y?L}.]Ve of the cumulative distribution, which is the density we seek:

O
Q1w = 2 7G) = 1w L0t 89) = PG _

Posese’ Ay 1 0<y<l

_whjch proves that y has the density (2). The transformution y = G@&) .
18 called the probability transformation.

By means of this thf'*'DI‘em 1t is possible to demonstrute many prop-
erties of c.ontmuo.us distributions in gencral by proving them merely
for the uniform distribution over the unit interval,

.6(;12: The 'Norma,l. D.istribution. A great many of the techniqued
uged in applied statistics are based upon the normal distribution, aB
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THE NORMAL DISTRIBUTION - £6.2

much of the remainder of this course will be devoted to 5 study of this
distribution. The density ig
1

il = — —(z—p) 2/ 2% -
L) %ge 3 ® <z <o ) (1)

and the fuuetion is plotted in Fig. 30 for several values of o. Changing
# merely whilts the curves to the right or left without changing their
shape.  The function given actually represents a two-parameter fam-
ily of disfriluttions, the parameters being u and o2 We have used e
symbols ¢ al o2 to represent the parametors because the parameters
turn out, s we shall see, 0 be the mean and variance, respeciavely; of
the distribution, Mt

2 {x)

08

\

Since n(z) ig givéi} fjo be a density funetion, it is implied that
'x:\uo

i"\;“ w0 d - 1
"\\“ f_” n{z)dz

but we Sbgﬁld satisfly ourselves that this is true. 'Il‘he Veriﬁcati@ is
somewhat troublesome because this particular function does not inte-
gratdNifito o simaple closed expression. Suppose we represent the area
under the curye by A; then

4 = 1— / ] g le—uti2e? g
‘\/271‘ o —
and on making the substitution
T — 8
¥y= =7



§6.2 SPECTAL CONTINUOUS DISTRIBUTIONS

we find
1 =
A= —" e~ivt ¢y
v IR
We wish o show that 4 = 1, and this is most easily done by showing
A 19 one and then reasoning that A = 1, since flo) i+ positive. We

may put _
1 ® 1 ®
A2 = e i dy —— o3 ol
_[ = y '\/217 [— £ O

2 )
S ey
=5 el dy dz ",

'..\\
(@

writing the product of two integrals as a double int;cgf:ll'ﬁ [n this infe-
gral we change the variables to polar (‘.()l}l‘dillii.L(:‘,k‘;:bi: the substiiution

y = rgin g \
2 =7 cos EJ"O’\\J
N

and the integral hecomes

X
AW
L
& W

Af". 1 2‘{” x
=g [} reiTdrde
T a0

‘ i ¢ '\’\s.'
Since the 11.:|t-eg§~al\0f n{z} does not have a simple functional form, we
can only exhlbLE'j;h'e cumulative distribution formally as

o\ 1 =
& Na#) = — —[(t—p)2/207) 2
i ’\x' ‘\/Er " f__ 3 [ ot (
and ifSye let .
AN t— o
'”\ w3 ¥ =
\We find 7
1 (z—p)/fa
) = f 7 e gy @)

ind glven.’a specific value for (& — w) /s, the integral can be Computed
_ y;lugeur:al nTet.hods‘ A tabulation of this function may be found
i Labie _H' Since the density is symmetric about p, i.e., since

e~ a) = n(u + a)
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THE NORMAL BISTRIBGTION §6.2

it follows thut N (z) for (x — p) /e negativeisequal to 1 — N(z"), where
(@ —w/e = = (¢ ~ w)/o. The graph of N(a) is given in Fig, 31

To Hllustrate the use of the table, we shall find Pl—1 <z <4
when 2 haos the density:

1 .
ME) = T e o)

We note that .
p=2 o =4 . T O\

- and thus 1hat the values of (* — p)/e corresponding to —1 and'é;@é
O

~1-2_ 3 4-2 1
i TE T T
v
W)
e N\
Lo \
5 v‘{:";
/:Mg ‘
N J : N
A= JrReY., /“_a\u A A0 A2 ALt X
:3 Fie. 31
hence: A
N
P < < 4) = N(4) — N(—1)
P\ = 6915 — (1 — .7734)
N = 4649

4 ..\: <

U

It ﬁa"gr‘{rat convenience that N(z) is of such a form that it need not
be tabulated for various combinations of values of w ande. The trans-
format-ion ¥ = {z — u)/e brings all normal distributions to the same
form, called the standard or normalized form. We shall reserve the
letters 4 and & henceforth to indicate the normal density and its
“Umulative form. Often we shall wish to indicate the parameters, and
this will be done by writing the functions as n(2; 4, ¢%) and N (z; g, ¢?),
*Parating the parameters from the variate by & semicolon, Tn this
otation the distribution (4) would be symbolized by n(z; 2, 16). The
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£6.3 SPECIAL CONTINUOUS DISTRIBUTIONS

standard normal distribution is then

1
ni(z;0,1) = N ]
(=0, = ®
and its cumulative form is
Niz;0, 1) = ]_:m n(f; 0, L)t (6)
We shall now find the moments of »(3; u, ¢2) by Lurditg first the
moment generating function. The computation ix ax folinws A
m(t) = Elet*) = gB{ette—) ,’\t\'
\

\

£ 1 7
e ptlE ] o 1R (r et I'IH..E'\“

—w V21 N\

1 _. >

V2o

f ,3_—-(lf‘!a”;-l(z—m:-'—:_".Q&?-p:J e
—m \Y
On completing the square inside the brackét/it becomes

= gt#
otn

\
7

(@ — ) — 20%(z — p) = (x — ma;;}\é&zﬂ_.u — 4} et — P
= (z — hF a°0)E — o2
and we have

«3
| L
mu) — 8“8“2:”0‘*‘;‘,—. _ e—(z—;&—-a’”’/?crfdm
. ’W?r [ g
The integral togeth "t\"ﬁ / i i i
_hemtegral together wibh the factor 1/4/2x ¢ is necessarily vne, since
¢ N/ . . - .

it i the area unde{\a normal distribution with mean p + o% and
variance ¢, Hehce,

\}" ml) = gwhtornn @)
On diﬁel‘iﬁ:ﬁfiﬁng this function twice and substituting { = 0 in the
resultwe find i
QO : r_
o By = u
) :..\;~'o #; — 0_2 + “2
”\z ’ Variance = I-‘; - (“1’)2 = g?

thus justifying our use of the moment symbols for the parameters.
6:3. The Gamma Distribution. The function

f) =

i =4 <0
18 called the gamma distribution. This is a two-parameter family of

distributions, the parameters being « and 8. 8 must be positive, an
112
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THE GAMMA DISTRIBUTION §6.3

amust be grealer than minus one.  The function is plotted in Fig. 82
for 8 = I unel several values of «. Changing 8 merely changes the

seale on the two axes, as is evident on exemining the form of the
funetion.
To show 1hiat the function represents a density (has unit area), we

shall evaluate the integral

A = / i x%e =38 gy
a

a1
8 A
~ f y e dy Oy
0 N\
£} % \/

i0 .

; 3 ‘\\S g 3 5 [ 7 a8 x
OO Fie. 32.
on substituiing y 1’:01:;‘:8/;3‘; hence A is necessarily a function of « only.
fa>0 we m"a@?iﬁ'tégrate at once by parts to obtain
R

O () = —yee |+ J," arevay

1]
o =« f Cylerdy
Whehed ; ’ S
enge 1t follows that 0
Ale) = ad{a — 1) 2)
If wig g positive integer, we may apply this recurrence formula (2}
Successively to obtain :
. A{a) = afa — e —2) -+ - (2)(1)4(0)
and sinee
A(0) = ﬁ,” evdy =1
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86.3 GPECIAL CONTINUQUS DISTRIBUTIONS

we have
Afla) = a!

when a is an integer. The function A(a) is often denoted by I'{e + 1)
in mathematical literature, but we shall use the symbel ! wheiner or
not @ is an integer. o

In practically all applications of the distribution, « 1s either an
intcger or a multiple of one-half. Hence for our purposes we need
only to evaluate (¥4)!in order to be able to compute «! for any value

of & we may encounter. N
Ge)l = 1o (=11 Oy
. AN
= % -/;} y—%e—# dy A \.J
N
and if we let ¥y = 2%/2, we have ) <;:"
08! =35 [[7 VB B3
) O
w 9.\

-ve,

N Y
0"\

B g,
4

i

N/

S

N
L g
E XY
any ®
L™

gince the integral is half the a;eztiil"nder a normal densify function and
is therefore one-half. Knogfing this number, we can evaluaie al for
any muitiple of one-half {1? sing the relation (2); thus

FHI= 56039)! = 3 X 24(4)!
2NC O 154/7
::\'... = —‘g—"
E"\,"
The cp{\\ulﬁ'tive distribution is

N
Ny *
NS

\»\;\' Fiz) = L aT;aH teetP dt x>0 {3)

and is, of course, zero when z < 0. Tt must be evaluated by numerical
methods unless o iz a positive integer, in which case the function ean
be found by successive integrations by parts to be

= - £ ! 9«-_’2 1 xﬂ 1 fz\* T
e[ ge ) ) - o L))

¥ >0 (‘1')
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THE BITA DISTRIBUTION ' §6.4

But in any cu=e 1b is usually simpler to refer to tables of the function in
dealing with ~pecitic problems,  The function () is called the sncom-
plete guimmn function and has been extensively tabulated by Karl
Pearson (' I'illes of the Incomplete Gamma Funetion,” Cambridge
University Dress, London, 1922),

The moment gencrating funetion for this distribution is

N 1
= z . e i ]
m(l) = ﬁ] et lger e 8 dz
= ) LY ] o —yd L
= o & Et-j e /) O\
'S\
on substiteting g for /8. This may then be put in the f,Qﬁ}l\I"'
i — _]T_/ yae—y(l—ﬁ!) dy ..“:\'\'
te. fo v’
= .. _1__.___ B Bl i gue\%urﬁn dy
(= BneE al (%
1 (5
= o e \J 3)
(1 — g+t AN
provided ¢ <2 1 3, since the last in.tfzg’%ré.l represents the area under a

gamman izt ribulion with parameters a and 8’ = 1/{i N pr), and .is
therefore one. On differentidling m(t) twice and putting £ = 0 in
the resulty, we find .i"\\

Bo= Bla + 1) | (©)
Y = 8e + Ve +2) (@)
N w=pe+ 1) ®)
Ve \d )
6.4, The .ef?;ﬁf)istribution. The density
s’\ ’ .
ey = et .(‘fﬁ—:* D! el —zpp 0<z<l (1
7 Qi
\"\ Nd -9 elsewhere

8 called the beta, density. The function represents a t-wojpara:metcr
family of distributions, and a few examples are plot-.t.ed in Flg: a3.
The parameters @ and 3 must both be greater than minus one. The
distribution hecomes the uniform distribution over the unit interval
whena:ﬁ;o_ : . o

Toshow that the area under f(z) is one, we shall compu@ the integral

Alay ) = [, wel =2V o @
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§6.4 SPECIAL CONTINUGUS DISTRIBUTIONS

Clearly 4 will be a function of « and §; we wish to show that it is the
reciprocal of the constant multiplier in (1). Referring back to the
gamma distribution, we may write

alfl = (ﬁ]m. e d:c) (}: yPe v d.y)

4 o
= f(; j; xﬂyﬁe—(mﬂf) dx dy

7{x) QN

KoY

&=4 ~\

20 8=2 O
) ,\\"
a= 2 . \:"\\
15 8=2 N
7))
L
Y,
1.0 R
a=| “:{’:x“
= ONY
05 \
K
E\/
AN
3 74 .
.&3} C4 08 0.8 .0 X
i»\‘;. ¥, 83,

and in th{t\ ast integral we ghall change the varisble z to « by the
qub&-ﬁq@;ﬁon ¥

ar 4
uy

T o= — dr =

_ Yy du
I —u

2k

(1 — u)?

i 1 .
1.ncc % gbx iously has the range zero to one, the integral becomes

151 — uy \°
ﬂ.s f [ ( u) yﬁg‘%’(l—u)( ) du d'f,f
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OTHER DISTRIBUTION FUNCTIONS $6.5
In this intcyeal we change y to ¢ by the substitution
y=0—up dy = {1 — w)dy
to get
algl = j;nﬁ)l u=(1 — u)foetBtig= dy dy

- (ﬁ)” B P dv)(ﬁ}l ue(l — w8 du)

==m+ﬁ+lﬂﬁum~wﬁw
N
which showa that A(e, 8) has the stated value. A{e — 1, 8 — B is
walled the hete function of a and g in the literature and is 'uéu‘zflly
denoted L e, 3). §
The cunmmdative distribution, often called the incomplq@é‘b'&ta. Func-

\

tion, i m'\‘\"
Fir) = 0 a0
x T ’ ?
_ {a -+ 3} + D! =(1 — )8 dzu.\\“{) <g <l 3
0 a!ﬁ! ”\ v .
= 1 Z‘ 3 ‘} r > ]-

and has alzo been extensively t-abula@f{tj by Karl Pearson (Tables of
the Tncomyplete Beta Function,” Cappﬁﬁdge University Press, London,
1932). N

The moment generating fu n¢tion for this distribution does not have a
simaple form, but the mo@té are readily found directly:

& 1
b= B(w) = 218 +j§‘ﬂ*ﬁ! ﬁ zrta(l — 2)° de

_ Gt 8 e bt (M et 8dr Dl _apa
@+ gokr + Dl Jo o @@+ 0B
- (et D+ )l W
AdFx B+ + Dt
noe ¥
Since the integral must be one. e .
6.6. Other Distribution Functions. A distribution .whlch we shall
find useful for illustrative purposes is the Gauchy density

1___1______ —w L p LW (1)
OB A ’

which has 2 moan only in a restricted sense and no higher moments.

The cumulative distribution is
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 Plz) = 1 % dt
@ =) . T¥G -
= la,rc tan (t - ;.e)T
v . —-=
1 1 )
== -4 Zarctan (x — u) (2)
2 7
Pearson’s Distributions. A general class of distribution funciions is
given by the families of solutions of the differential equation ~

dy (=4 a)y AN
dr b Tert+d O @
The equation was obtained by Karl Pearson by plli:-‘t-.ingﬁ;d};_;"rix equal
to the slope of a straight line joining two successive [j«}infs ol the dis-
erete hypergeometric distribution. The solut-io‘nﬁ’\ﬁf this cgualion
were classified by Pearson into twelve families el\etrves, those of one
family being called Type I curves, those of asecond Type IT, and so
on. The gamma distributions are essentially the Tvpe IIT ciives of
Pearson; the normal distributions are his/T'ype VII curves: the bets
distributions represent his Type I ‘eufves, while with @ = @ they
represent his Type IT curves. O

The different families of cur}f"és arise when different relutions are
assumed between the constant® a, b, ¢, d in the differential caquation.
Thus, for example, when & and ¢ are zero, the equation becomes

o‘."
dy
v - a ( +a)ds
and its solution i&'; " '
B :“. 1 .
\\ logy = 3 (x +a)*+ K
N y = kelstori

AN _
q:fzuch be{?omes the normal density when d is taken to be negative and &
_ de.tem.uned 80 a8 to make the area under the curve equal to one. By
con_sldermg various other conditions on the constants in (3), weeould
derive all twelve of Pearson’s types of curves, but we shall not develop
Fhr_ase becanse most of them have not proved to be of great importance
in statistics,
The Gram-Charlier Series.
be represented by an infinite
Suppose f(z) is a density funct

A wide class of density functions may
serles called the Gram-Charlier series.

lon and suppose its mean and variance
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- OTHER DISTRIRUTION FUNCTIONS §6.5

are g and o2, Let

then y has zero mean and unit variance. The Gram-Charlier series is
a serics in the derivatives of the hormal distribution of . et i {Y)
represent the ith derivative of the standard normal density n(y: 0, 1)
Thus o

nﬂ(y) = v"'—l_h_zq_r g—%@" ~ f..\ |
1 . ¢ \\
My =~ Vo e =~ ymo(y) \\,
N
ne(y) = @* — Dnoly) 7\
nsly) = —(u* - 3y)na(y) ¢

and in general
n(y) = Hiy)no(y) N
where i:(y) is a polynomial of degree 7 in ‘yisa‘lled the 7th Hermite
polynomiul. The Gram-Charlier thcorem:'st'at-es that under rather
general conditions f(z) may he put in tha form
J(z) = aone(y) + am;(y’}f# anma(y) + - - -

;' fy) ~
.';e O

A
no(yfy, aly) @)

\ =0
where the ay are condtiints and y = (¢ — g)/e. It can be shown that
Hiy) = O

]

I

'\ )

3 i“!_" s < 3 . 3

{=1){ys 7@‘«;2 D e 50 __ngf)_(* byt ] ®)
~O7 [ B H @y =0 i

A% —l ifi=j )

We shall not prove these relations. ' By means of the second one we
Way determine the coefficients a; when Flx) H known and can be
Cxpressed by (4), Let equation (4)-be multiplied !:)y"H;(y) and then
Integrated on both sides with respect to x after puttingy = (z — p)/o.

We find
]”mcgﬂmm=MI
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§6.6 SPECIAL CONTINUQUS DISTRIBUTIGNS

on applying (6), and hence that

o = 5 f_ﬁ i (“‘ - ”) fx)dz )

Sinee the Hi[(x — p)/¢] arc polynomialgin (& — p), the a; will be linear
funetions of the moments of  about the mean.

The Pearson curves and the Gram-Charlier series were devised to
meet the following practical problem: In general f{z) isunknowu, and
all that is available is a sample of values of 2. By mecans of{the
sample, the moments of f{z)} can be cgtimated. A Puzu-sy{l‘\vurve
which is inftended to approximate f{z} may be filted to theshnmple by
equating the sample moments to the theoretical moments a¥d solving
for the parameters which appear in the theoretical mdments. These
values of the parameters are then substituted in thg‘ﬁm’cti on to obtain
a specific function which is meant to approxithaté f(z). Similarly,
having estimated the moments, they may be ufed to defermine a set
of values of ; which, when substituted in {4){#ives an approximation
to f(z); in this method only the first femberms of the infinite series are
uged. QO

Actually the proecess of fitting a gﬁiéoth curve to a sample does not
add anything to our information about f() that is not contained in the
sample, The fitted curve mayyint fact, give one an entirely migleading
impression of the real densityfunction, However, when the sample is
quite large, it is sometiméSgonvenient to replace the data by some sort
of fitted curve in orde® %o simplify further computations. Insgurance
companies and cg;pt%min government agencies which deal with lurge
masses of data find’the technique convenient.

22
6.6. Problems-

1. Find'and plot the eumulative form for the uniform distribution.
‘ 2..\..'\’\7hat transformation will change the variute z to one which
will\bave the uniform distribution over the unit interval if

3

(x — 1)
2

Jx) =

I <2 <3? What interval for the new variate corresponds to
Ll < < 297
3. Plot n(x; 0, -23), nfx; 1, .25), and nlz; 1, 9) en the same praph.

What would be the appearance of the distribution 2
' : e digtribut . rerv small?
(Use Table 1.) 1stribution if ¢ were very smal
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¢ If & v normally distributed with ynit mean and ¢ = 4, find
Pl > 0 and .2 < 2 < L.8).

5. Fiul ihe numhu k such that for a normally distributed variate,
Ply — h T < p ko) = 95, What would k be iff P = 907 997
For wh ]u(. of kis Plz > u ~ ko) = 95?7

6. I-‘iur.l the generating funetion E(e?™#) for the moments about
the meqnn for o normal distribution,

7. Finid g, In terms of ¢ for a normal distribution for 7 even and #
odd.  (Vxpand the above generating function in an infinite series,)

8. Whi constant multiplier will change the function e~ intoa
density Minviton?  What are the mean and the variance of the regulf-
Ing disteil afton? O

9, Tvalaate ﬁu e E el N

10, itvatuate ﬁ]w a2 oy, 'mj\‘\
11, Plof 1he gamma density fora = 1,8 = 1 a N\ I,8=2;a=2
g = Ly = -, 8=1. \\'

12, l'mcl the thivd moment, i, of the gamm distribution.

13. If in tlu gamima distribulion 8 is pute equal t0 2 and o is put equal
to (n — 2172, the resulling distribution\is called the chi-square dis-
tribution \\1th n degrees of fmcdom * Tind its moment generating
function and its mean and varmnee

14, Tind #: sueh that Pz > k) > .05 for the chi-square distribution
with two dearees of freedom.\

15. Find the rth mom n{f)f the gamma distribution without using
the moment go neratingsunction.

18, Find the r’rh moment of the gamma distribution using. the gen-
erating funetion,

17, Plohthoba‘radenmtyfora—0 B=0a=1,8=1;a=3,
B=3;0= \g — 3:a = 3,8 =2 What would be the appearance
of Lhe fummon if both a a,nd 3 were large?

13 l'md the mean and variance of the beta distribution. »

b'ho\\ {hat the beta density is symmetrie ahout the point z = 14
“‘hen a =3,

o

e g b @ dx
20. Find the mean of the Cauchy distribution if f_ T =

s defined to be

. atd g zdz
Jmo R T - e

Show that the distribution does not have any higher moments.
i21



§6.6 SPECIAL CONTINUQOUS DISTRIBUTIONS

21, Integrate Pearson’s differential equation when ¢ and  equal
sero.  What family of distributions does the result represent?

99, Show that any Gram-Charlier expansion must have @y =1,
ay=0e00=0 o

93, Evaluate a4 for the Gram-Charlier expansion of f(z) = I,
0 <z < 1. Plot f(z) and plot

—
F

- 4 x
H@) = noly) Y, aHily) ¥ =
<o

in order to see how the sum of first few terms of the Gram-Ch z:i.'r'k\ier
series begins to approximate f(x). Y

94, Compare the Cauchy density and the normal déisity with
¢ = 2 by plotting them on the game graph both w‘i‘c}i’;' menn zero.
Notice that the variance is a poor eriterfon for compafihg two disiithm-
tions unless it is known that they have the same fonctional forns.

-95. What are the cumulants of the normal distribution?

26. Let « have the gamma distributior;,w}tﬁ parameters « = !0,
g = 1. How many moments does y =.l/inHave?
" 97, If x has the gamma distributiof)\ind the moment generating
function of ¥ = log #. N

28. A variate z has the density,

f) 2@\ Pz 2> 0
im\

Find its mean and v .piémée.

29. A variate hjs mioments g, = rl. Tind its moment generaling
funetion and the\n deduce its distribution.

30. A Vari;{té i has the uniform distribution over the unit interval;
what funetioh’of x has the gamma distribution with ¢ = 0, 3 = 17

81. Avariate z has the beta distribution withw = 0, 8 = 1. What
functibn of x has the gamma distribution with « = 0, 8 = 1?

/7N § 23 - 3 r! .

\32 A variate has momen‘;s_, o= W’ when # is even and u. = 0
when r i.s odd. Deduce the distribution of the variatc from its moment
generating funetion,

33. Bhow how tables of the incomplete gamma function Fiz; a, 8)
may be used to evaluate the cumulative Poisson distribuiion, say,

n

E oMy
- ” 1'

y=i
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PROBLEMS §6.6
34. If log x is normally distributed with k=1 6% =4 find

P(ls <z < 2)
(log 2 = .93)
35. A variate x has the density

Sz} = Q\Exe‘*“ >0

Find £{x < 4},

36. Determine the mean and variance of the normal distribution,
by dilferentiating the identity :

Oy
e O
with respeet to p and with respect to o, .~,<\"~

37. A variate x is said to be transformed to standatd-seale if it is
divided by its standard deviation. Show that theseumulants of z/a
are equal to v, /v3% where «, is the rth cumulang of*z.

38. Show that the gamma distribution is é&ﬁy normal when « is
large, by comparing the cumulants of the tn»:@’lldkaétributions on standard
scale. e,

39. A variate x is normally distri buj‘,e’gj’%with mean p and variance #2,
Show that the mean of the conditionah distribution of 2, given

0. < b
is R\
nla) — nd)
N (O ok
40, A variate ;.Eéé“density f(z). Ilow might one determinc a
funetion u(x) sughwhat u is distributed by g(u)?

£\
\’“/
i\

b 4
&7
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CHAPTER 7
SAMPLING

7.1. Inductive Inference. Up to now we have been concerned with
cerfain aspects of the theory of probability. The subject of sampling
brings us to the theory of statistics proper, and wc shall commler
briefly here one important area of the theory of statistics aqd‘ its reln-
tion to samp ling, '

Progress in science is ascribed to experimentationd? Th{ rescarch
worker performs an experiment and obtains some da%\a, On the basts
of the data certain conclugions are drawn. Thelednclusions usually
go beyond the materialg and operations of tI1erart101114r experiment.
In other words, the svientist may gencer athi‘om a particular experi-
ment to the class of all similar cxperiments. This sort of extension
from the particular to the general 1s,ealfod inductive snference. It is
the way in which new knowledge igd found

Inductive inference iz well kno“’n to be a hazardeus process. In
fact, it is a theorem of logie that exact inductive inference is impossible.
One gimply eannot make a\pelfectly valid generalization. Tlowever,
uncertain inferences car be made, and the degree of uncertainty can
be measured if the cxpximent has been performed in acecordance with
certain prmmplea One function of statistics is the provision of
techniques for makmg inductive inferences and for measuring the
degree of upedtiainty of such inferences. Uncertainty is measured in
terms of probability, and that is the reason we have devoted so much
time tgfhe theory of probability.

Let\ s consider a particular experiment to make the above idocas

onieshat more conerete, Suppose a nutritionist studying a vitamin
deliclency wishes to discover the effeet of a cortain diet. He sclects,
say, ten individuals and gives them the diet for a number of duys or
weeks. And let us suppose that the diet plainly affected all the indi-
viduals as reflected by some measurable criterion, say loss of weight or
decreabed metabolism.  The nutritionist is not interested in confining
his conclusions to this particular group of individuals. He would like

to conclude that all or at least & large proportion of all indjviduals
would react similarly to the diet.
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INDUCTIVE INFERENCE §7.1

It is ¢lear that no cortain generalization is possible. It is conceiv-
able, for cxample, that the nutritionist was unfortunate enough to have
selected individuals who happened to he physically on the downgrade
at the time, s0 that the apparent results of the experiment were not, in
fact o consequence of the diet. Or the individuals may have been
exposed 1o some minor malady which was not, recognized. Some item
of food in the dict may have heen tainted: In faet, one eould list a
great muny accidental circumstances which coyld have produced the
observed results quite independently of the dict, Whatever general-
ization iz made must be an uncertain one. O

To camplete the discussion, we shall consider one vory simpledkind
of inforcace that may be made. Let ug suppose that the indildduals
were selected from some large group of individuals, say the infwbitants
of a county or state. We may envisage the possibility €hat there is
some proportion p of the individuals in the large group&Fhich will be
adversely affected by the diet and that the remdaining proportion
¢ =1 — p will be favorably affected or unaifecled by the diet. Of
course 1t is possible that ¢ may be zero. If tlié%-’cn individuals were
dravwn 2% random {with replacement) fromy tﬁﬂe large group, then the
probability that all ten would be adverstly aflected is po, Suppose
Wwe consider a few specific values for DN p = 14, then p?0 = 2 oug.
If in fuct p is one-half for the large roup, then the experimenter hag
been most unlucky in his sclection, for then a 1 in 1024 chance has
occurred.  If we try p = .7, wofind p2* = .03, which would still make
the sample rather improbable. We may reasonably suppose that
p>.7. In fact, we m L8y, “Taking account of sampling fluctu-
ations only, p 1s greatér than .7 unless a chance with probability less
than three in one hungdred has occurred in the experiment.”

The Iast statement is an inductive inference. Somewhat more use-
ful inferences eottld be made by taking aceount of the actyal measyre-
Iments of, sa’}:{‘ﬂie losses in weight, but this simple one will illustrate
the points "s’\:-'e wish to make here.  While we say that p > .7, we admit
" the poagﬂ';}ﬂit}r that we may be wrong, and we give a measure, .03, of
the faakimum probability that we may be in crror. By increasing the
Maximym probability of error we could narrow the range forp. Thus
we might say p > .9 unless 5 chanee with probability less than ,103
has occurred,  The size of the probability of error is a matter of taste
to g large extent. Some investigators commonly usce .05 while others
Wish to be more conservative and use .01 or .001.

It is to be observed that the probability of error measures o_nly the
error due to random sempling fluctuations. We have not said any-
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§7.2 SAMPLING

thing about the possible accidents that were me:,r:}tioned earlier. . And
in fact it is impossible to say what the probabfllty_of sut_:h c:a:ccu'leﬁt.s
may be. The nutritionist can only say something 111{(:’. this: “ Barring
accidents, p > .7 for the group of individuals from which the ten werc
selected; unless a chance with probability less than .03 has occurred
in the experiment.” o .

We may mention one other point here. Referring to the same
cxperiment, is it possible to conclude without error that p > 0? '}‘hc
answer to this is *Yes’’ in theory but generally “No’ in practice.
The accidents that may have occurred rule out an inference of\phis
kind. An experimenter willingly assumes that he performs higéxperi-
ments with such care that the probability of accidents is n{\:gligil;hz n
comparison with the probability of his sampling errors, biit-he cannot
assume that accidents are Irapossible. 7\

The theory of statistics thus has a part in any jaeiictive inference
based on experimental data. Itsrole is to providd¥mensure, in terms
of probability, of the uncertainty of the infe]g'e@:(‘:. The measure will
be based entirely on sampling errors. If isup’io the experimenter to
guard against accidents which may inwalidate his results, and ihe
theory of statistics makes no attempt\to”deal with this aspect of the
problem of inference. O8N
“-7.2. Populations and Samples.NT'he word population in statistics is
used to refer to any collection of'objeets or results of operations.  Thus
we may speak of the population of dairy cattle in Wisconsin, the popu-
lation of prices of bread &) the City of New York, the population of
mileages of &Ut-omobi]e\t\l‘res, the hypothetical population of heads and
tails obtained by tossing a coin an infinite number of times, the hypo-
thetical populatioh’ of an infinite number of measurements of ihe
veloeity of light,"and so forth.

The probilem of inductive inference is regarded as follows from Lhe
point ?f.if?ew of statistics: The objeet of an experiment is to find out
somethiig about some specified population. It is impossible or
jmﬁrabticable to examine thC entire p0pu]ation, but one may eXEI.IIliHC
a‘part or sample of it, and on the basis of this limited investigation
make inferences regarding the whole population.

It is important that the sample be chosen from the population it i3
dosired to study. This obvious principle is violated surprigingly often.
‘Thus in the nutrition example mentioned above, if the nutritionist
' W_lshes to make an inference about the population of the United States,
his ten subjects must be randomly selected from that population. If,
in fact, the ten subjects were chosen from among thirty students it
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¢ one of his classes in home econottics, then he has studied a very limited
' population indecd. He ean make 5 rigorous inference only concerning
the thirty students, Actually, of course, he would probably extend
his resulls to cover a larger population with considerable Justification,
Ie could avgue that the mere fact that the ten subjects happencd to be
taking o particular course in home economics.could not conceivably
influence the experiment and that the results could certainly be taken
as representative of all women students in the college, And from
other experiments he may assume that sex has no effect on reacfons
to dicts and elaim his results apply to men students as well, He'wmay
gencralize further and say the results reasonably represent all.people
of college age in the region from which the college draws aﬁost_ of its
students.  But here he might be getting on shaky groumd’ hecause it
is well known that college students come from the wealthier and hence
better nourished familics in the region. It is even more doubtful if
the results could be taken as representative of thgwhole adult popula-
tion of the region.  And it would be complately unjustifiable to claim
that the results are valid for the adult peptilation of the whole nation,
becauge reactions to a given diet depentlon the normal diet, which is
quite different in different regions. .\ ' '
Extension of the population orig'i‘;ial]y studied to a larger population
increascs the probability of oreer by an unknown smount and thus
destroys the measure of confidénce to be placed in the inference. The
careful investigator does not indylge in this practice, but chooses his
sample from the entire population he wishes to study if it is at all prac-
tieable. For exampl& e nutritionist, if he wishes to make an infer-
ence about the adult’population of the nation, might actually select,
by some deviceor other, a random sample of individuals from the
whole adult pépulation and then enlist the aid of colleagues who happen
to live ne:;h(t»ﬁ'e individuals selected. o
We have implicd that a sample must be random. It is this property
of & samiple that enables one to compute the probability of error of his
inf@‘?nbe. The theory of probability cannot be applied to a non-
random sample, so that there is no way to measure the degree of confi-
dence to be placed in any inference from such a sample. The word
random refers to the manner in which the sample is selccted rather than
to the particular sample. Any possible sample is a random sa.r‘nplc.
Thus & person m ay shuffle a deck of cards thoroughly and then blindly
draw four cards from it, thus obtaining a random sample of four cards,
If, in fact, it turned out that he drew the four aces, then hf’ ol?t-amed )
Very unrepresentative sample of denominations, but still it was a
127
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random sample by virtue of the method by which it was obtained.
Similarly, the nutritionist may have carefully drawn a random sarple
of ten adults and obtained unfavorable reactions to his diet in all
cases. It may be, in fact, that only a small proportion of individuals
in the population would have such a reaction and that the nutritionst
wus particularly unlucky in his sample. The margin of error given in
his inference measures the probability of such a contingency.

An investigator hopes, by drawing a random sample, to get a fairly
representative portion of the population he wishes to study. Qften
it is possible to introduce a certain amount of nonrandomness in the
sampling procedure to obtain partial assurance of a repEbsen lative
sample. This can be done when something is known abieut the popu-
lation. Thus a public-opinion ageney may wish o fike & preclection
poll of the United States. It knows the populatiohs of the various
states and ean assure itzelf a degree of representativeness by alloculing
its sample to states according to the populatiens’of the states. Thus,
if T per cent of population 18 in & given stgtd,/]1 per cent of the sample
will be taken in that state., Within the' sfate further allocations may
be made, The sample may be evemly divided between the sexcs.
The proportions of urban and rural @wellers may be forced to agree
with the actual known propor:t-ioiig within the state. The cifect here
is to divide the populition Wb a great many smaller populations.
But somewhere along thedine random samples of the subpopulations
must be faken, if infefehtes with measurable uncertainty are o be

made. X
o 7.3. Sample Ditributions. Supposec a variate z has density f{z)
1o some population.  And suppose a sample of two values of z, say =
and *y; AIe drawn at random. The pair of numbers (z,, z2) determine
a pomt in(a plane, and the population of all such pairs of numbers that
ml.ghtahm e been drawn forms a bivariate population, We are inter-
estedimn finding the distribution of this bivariate population in terms
~af the original distribution f(z).
' ""The joint density function for 1 and zs must be gome function, say
(s, 20}, such that for any a,, as, by, by we have

Ploy <o <by, ae < 25 < by) = f:‘ L‘;" flzy, w)deg dey (1)

Now by a random sample we shall mean that the value of the first

()bS.Cl'Va.t-lOl’l &1 hag no effect whatever on the value of the second ohser-

vation, .In other words, for & random sample, z, and 2, are inde-

pendent in the probability sense, When the two variates of a bivariate
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distribution are independent in the probability sense, we hm-'e.seen
that the joint distribution ig the product of the marginal distributions.

In the present instance, the marginal distributions are simply f(z;)
“and f(zs), so that we have, by definition of randomness,

Sy @) = fadfms) @)

or, what is the same thing,

Plar <oy <y, s <2y <bs) = Play < a; < bui)Pae < & < by) (3)

. \

As a simple example, suppose z can have only two values, zero and

one, with probabilities ¢ and p, respoctively. That is, z iz a dizorete
variate which has the binomial distribution S\

flz) = (D gt oz =0,1 M 4)

and singe ((])) = (]l) = 1, we may write it ag
: AY;
flz) = pogi \\
The joint density for samples of two valuasvol z is

fos, 2} = priogioms '=0,1,2, =0, 1 (5)

which is defined at the four point&,(0, 0)(0, 1)(1, 0)(1, 1) in the :, z,
plane. 1t is to be observed thab this density is not what we sghould
have obtained by drawing...&'o clements from a binomial population
and counling the numbe{\‘of ‘successes, say ¥; that density is

*ly = (5) Pty =0,1,2 (6)
't\. 3 |. + - n

and i diffe f"ﬁ)m (5) in that it is the distribulion of 1;}‘10 single variate
1+ xe. Kiplation (5) gives us the joint distribution of the two
random wgtiates 2, and za o

Ibdﬁt?; be noted that f{x,, x2) gives us the distribution of the sample
in thebrder drawn. Thus in (5), f(0, 1) = pg not 2pg. f([_]: 1) l"ef.?'l's
b0 the probubility of drawing first a zero, then = one. f’md In general,

} represents the probability that the first observation drawn fail.]s
n the interval (a1, 1) and the second falls in (as, b2). The opposite
bteurrence docs not satisfy the specification unless, of course, the two
.i.’:'lfél'vals happen to be the same. . )

By rca-sor:ing exactly as before, we find that the joint density for a

. . ... opulation with
Yandom sample of size #, L1, L, » ©x; from a pop
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distribution f{z) is
Fles, @y 00 0, ) = f@)f(me) ¢ 0 () (7)

and this again gives the distribution of the sample in the order drawn.

Our definition of random sampling has automatically ruled out
sampling without replacement from a finite population. If, for exam-
ple, we draw two balls from an urn containing, say, two white and
three black balls, the result of the first draw certainly affects the
‘probability of the result of the second. The two drawings arve pot
independent in the probability scnse. In this case, another definition
of random sampling must be adopted (Probs. 26 and 32). Ouy p}ssent
discussion in this and in the following chapters is thus concérhed with
sampling from continuous populations (where the questigmﬁ‘pf drawing
with or without replacement does not arise} and to/Bampling with
replacement from finite populations. \\

7.4. Sample Moments. If 2y, 25, * + * , 2, arg\dSample of n values
drawn from a population with density f(z), theth sample moment is

defined to be 2\

ki3 AN
zxi ?‘)'-,="1, 2, - - - (1

a3

wd

v k3
A 1
,zmx\z = Z x (2)
¢ \.. T
\\ i=1

We shall show that, m ey be taken to be an estimate of the popula-
tion moment ). NS

Suppose gﬂ“\&)}i% any function of x; then the expected value of the

function is )
Q .
Q Eg@) = [ g@f@ds Y
N T
W\'e‘;shall see that for a large sample, @i, x4, -+, a’ theexpression
1 n
n 2, 900

may be gxpectec.l to approximate Eg(x)]. Let the area under f(z) be
divided mto’ strips of width Az, and let n; be the number of sample
e]err}ent-s which fall in Az; with 2n; = n. Let z; be the mid-point of
tl'}e interval Az;.  Then if the Az, are small, all the a; whichfall in Az;
will not differ much from z; and we may v:rrite ‘

130



BAMPLE MOMENTS 874
1 oot
7 D060 =1 Y nyla) ©
[ 2

Now the area over any Aw; is approximately f (z;)Az;, and it is the prob-
ability, say p;, that any randomly drawn vale of 2 will fall in Ag,
If a sample of 7 values of z is drawn, we expect np; of the sample values
to fall in Az;. It follows then that n;/n is an estimate of p,, and (4)
may be written

2 2yl o)Ay O
This lust sum approximates the integral in (3). \\ *
£(x) - ]

Ax, By Hxy-----

B84, | )

The above argument is merely heuristic arfd does not prove any-
thing, Tt docs give someJnsight, however, inte the way in which
samples provide informiation about distﬁbutl?ns. We can prove
directly that the expacted value'of (1/n)Zg(x:) is E’[g(x.)}.. (We now -
drop the primes {rgm the z;; they were used a,tfove to dlstlnguistE t;he
sample values fedm the mid-points of the Intervals.} The joint :
density of thg:\':p&, Zo, v v, e 18 _ _

A .
) flxy, 22y + 0, wa) = 1 f(a:) (5)

S Pt

heﬁi\%“;tﬁﬂe expected value of the sum s

E [;@zg(x‘.)] - [ / o f ;ﬁzg(xi>i1:]1 7@ glflldxe (6)

Thig integral may be written as the sum of # integrals of the form

?1_1 f f o [ g(x{)lj][f(xf)dxf].
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which in turn may be written as the product of » integrals, all but one
.of which are of the form

fz)dz; = 1

and the remaining one is

1 .
1 / glaf(xodz: = — Elg(z)] {7
m . i
Since (6} js the sum of n such integrals, we have
1
E[;me]=Emw1 ®
On choosing g(x) to be z7, we find that the expected value o{ iHe rth
sample moment ig the rth populatlon moment, A
] " .
P | , AD
EWJ—E%ZIJ R
= E@) :
' N
= 4 R2s (9)

We may review the meaning of this result“x The sample moment m;,
is a function of n random variables and istherefore a random variable
itself. As such, it has some probablhty distribution, and equation
(9) shows that the mean value of¢ th‘&t distribution is ¢.. We do not
therefore suppose that m} is in any ‘=ense equal to ;ur for a given sample;
it 1s simply a random \»ama{ﬂe whose mean is pf. We ghall spenk of
m, 8s being an estimate of 3. Whether or not it will be an accurate
estimate depends on ho\x\closc]y the distribution of m is concentrated
about its mean. D

Correspondmg t6/the papu]atmn moments g, about the mean, we
may define sanj}sﬁé moments about the sample mean as follows:

\‘.
R -=§Z<m—@f

AN
\\ ~have my = 0 just as g, = 0, since

m1=$2(m,~——£)
i3ty

=F—ZF=10
The m, may be regarded as estimates of the g, in the same sense that

m, estimate 1); however, they arc biased estimates, That is, it is not
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true that
E{m,) = Uy

exeept whenr = 1, We shall illustrate this fact for » = 2in Probs, 12
and 13. '

B. The Law of Large Numbers, We have seen that the expected
value of u sarple mean is the population mean,

E@ =u ' (1)
Let us find the variance of th¢ sample mean \

o = E(Z — u)?

{1 :
=‘E(?—%Z$;—#) “\ %
o A
EEZ(QX—;&)] R
R
1
- w73 ““}q\ 2

O "
On squaring the sum, we get t-erp:,%.“uf the form (z; — u)® and (2)

I

N
terms of the form 2(z; ~ p)(z; <R with £  j. The expected value
of (25 — 1)? depends only on t‘l;é;marginal distribution of #;, since in
the Infepral \~\
I8 e — w2 1 [f@)da
B\ i
all factors not invgl:iring 2; become one and we are left with
O fw — wfaddn = o 3)
where g2 i3 tlgé;{;\opulzmtion variance. Similarly, |
Bl 1) (x; — w)] = Jf (& — ) (@ — wlf(@)f (@) das da;
A = [ o — wfde: | (5 — wie)de;
"‘\' W 4 ~0 (4)

Equition {2) then becomes

| 7
o'?:-—';ZE(IE.'—#)g’
E n®
fa=1
=$ a?
_at (5)
n
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;. Thus the variance of the sample mean is equal to the population vari-
¢ anice divided by the sample size; this is true for any population with a
I finite variance.

! Phisfact is of extreme importance in applicd statistics. It implies
that whatever the population distribution {provided it has a finife
variance), the distribution of the sample mean becomes more and maore
iconcentrated near the population mean 2s the sample S1Z¢ INETeRses.

. iTt follows that the larger the sample, the more certain we can he that
ithe sample mean will be 2 good estimate of the population mean. T bi\s

;-'J is essentially the law of large numbers. We shall obtain a morc gre-

- ¢cige statement of it below. _ .\:\

Suppose the dengity of the sample mean is g(Z), where Z js(the nean

of a sample of size n from & population with density f(z)\ We huve

AATYT N mradyi
o\ Fre. 35.

»

found that the mean and afa}iance of g(Z) are u and ¢%/n, wherc u and
o? are the mean and viriance of f(x). It follows from the definition
of the variance that()
\ .z at -
prot="1= | @ - wy@as (6)
. :"\so

Now Iet’ ykbreak up the range of integration into three parts, as illus-
trated in Fig. 35:

O

N NN
&:g f” (5 _ N _ a4 lae/~n} B .
w)g(®)dz + — N
nY J_. ey & w(EIEE
+ f T — p)g(@ds (7
s (oo /v n) (:t: pr.) g(:r)r.c ( )

wher.e @ 18 any arbitrarily chosen positive number. We are going to

obtain an Tnequality by reducing the right-hand side of equation (7).

We shg]l dle}&rd the second integral, and since it is positive, the right-

hand side will be decreased. Also in the first integral we S{l&]] replace
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THE LAW OF LARGE NUMBERS §7.5

the factor (Z — u)* by a%?/n. This will clearly reduce the value of
the integral, since in the range of integration

A N T T

The same substitution will reduce the third integral also, We sﬂé;il
have then

ot nig? [e—tee/m) ale? [ :
- > [ n il . : T 7
7 o g9(z)dz + " ﬁ e g(Z)dz (8}
or, what is the same thing, ¢\
ne
1 - as O '
5> P (|2: — > _\/_E) RAC

sinee the two integrals in (8) give exaetly the probs@;iity that Z les

. N

outside the interval g — (\a/—g_) top 4 (aa/Vﬁ). \4
n $
AN\
Now in (9) let as/+/n = b; then 1/a? ;.c&fhbg, and (9) becomes
- B :rg
P (jx — 4 > < | (10)

This relation is known as Tchébﬁréhéff’s inequality. Tt may be
written in the alternative formea®

a2
P(—b:§§§~u<b)>1—§b—2 (11)

Tehebysheff’s inequzh}}y gives u precise formulation of the law of
large numbers. Referting to (11}, we may choose any small number b
and determine a’sfall interval about the population mean; having
done this, we m::}y choose n large enough to give a value as near one as
we please f«’)\—ﬁle probability that the sample mean will lie within the
small intefwil containing the population mean.

"To gansider an cxample, suppose some distribution with an unknown,
_m\ﬁi’is;h:-is a variance equal to one. How large a sample must be taken
m oMer that the probability will be at least .95 that the sample mean
will lie within .5 of the population mean? We haves? =1, b =5,
and we wish to choose » so that 1 — ¢2/nb? will be .95,

0.2
1— 5= .95
whence .
o? b _ g0
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The example ig nob realistic because the variance is assumed Lo be
known, Later we shall have to consider ways of circumventing this
difficulty. The important thing here is the indication of the possi-
hility of making very accurate and reliable inferences provided large
samples can be obtained.

7.6. The Central-limit Theorem. The central-limit theorem gives
a still more precise statement of the law of large numbors. It g the
most important theorem in statistics from both the theoretical and
applied points of view. And it is one of the most remarkable theorems
in the whole of mathematics. A great many eminent mathemalifidns
(De Moivre, Laplace, Gauss, Tchebysheff, Liapounoff, Levy, Cramer,
and others) have confributed toits development. The thegrem s this:

© If ¢ population has a finite variance o* and mean p, thep, e distribu-

" tion of the sample mean approaches the normal distribujion with variance

" o2/n and mean p as the sample size n increases. \‘
The astonishing thing about the thecrem is the faet that nothing is
gaid about the form of the population disﬁrj.l@t‘ion function. What-
ever the distribution function, provided gnly that it have a finite
varianee, the sample mean will have approximately the normal distri-
bution for large samples. The cond,i.tibn' that the variance be finite is
not & critieal restriction so far @svapplied statistics is conceimed,
because in almost any practical §ituation the range of the variate will
be finite, in which case the yarance must necessarily be finite.

We shall not be able to prove this theorem, because it requires rather
advanced mathematical techniques. Ilowever, in order to make
the theorem pla-usibl@, we shall consider an argurnent for the more
restricted sifuatiendh which the distribution has a moment gencrat-
ing function. Lhe argument will be essentially a matter of zhowing
that the mp\ﬁ;}sﬁt generating function for the sample mean approaches
the moment gencrating function for the normal distribution. We
shallﬁ'.'i‘s} obtain the moment gencrating function for

"\ 23"—;,;"
.\ ¥ y: 7

R 3
\ 3 : g

when z is normally distributed. The generating function is

mi(l) = f_: ern{z’; u', o’ )du’ n
= PRV Tt LY L 2
e € & dx (2)
and as in section 6.2 we find
m](ﬁ) = git* (3
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-

Now suppose & has some arbitrary density function J(x) with mean
¢ and vatiance ¢ which has a moment generating function. The
moment generating funetion of (z — #) /o, say me(i), is defined as

mz(t) - f_.u;. es{x‘—ﬂ)mf(x)dx ’ (4)

A sample of size » will have & mean with some distribution, say g{z),
which we have seen must have mean g and variance o%/n. The

moment. generating function for I\
E—u .
g = = O 65
o/ <O
P s . N
say maif), s defined as O
L i :\:.
mt) = [ eNrg@a o) ®
: o A\ N :
It is our purpose to show that ma(t) must approashm,(t) when n, the
sample size, hecomes large, AN
We can determine My} in terms of mz(qi\'vmn;;(é) 18 the expected .
value, PN,
[4 .‘;—.u

12=e ’.—Er‘
B (g“/’\/; = E‘(:g& LAY )
and since we know that the jointf?g}:isfribut-ion of thezy, 22, © -+ | &, 5

n
[1 J(x:), we may write \"\

i=1 '\’x,} s
ez} 2[,,:\ - [_: e _"_‘.l___]l Flesda:
o0, tmzn |
\’:\,: — H [I_’; 8\/\n - f(xg)dxg] e
o i=1 .

and by.r(';r%uc of (4), each factor in this product is simply ma(¢/~/n);
henc’é\; ~/ '

ms(t) = [mz (\j;&)] (8)

The rith derivative of ma(t/ \/;’D evaluated at ¢ = 0 obviously givis us
the 7th moment about the mean divided by (s v/n)". APd we have
Seen in See. 5.3 that we may write

¢ Lt 1 i\ iﬂ(#)é e (9
() v G o
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and since g1 = 0, yg = ¢?, this may be written

iy _ 171, L sy 1 omey, Cn y

m2(75)—1+;1'(§i +3!V"T’Lf’3£ +4In0'4£ —+ (1)

If we recall that the definition of ¥ is

. [N
e¥ = lim (1 -{-E)

we see that ms(l), as n becomes infinite, becomes of exactly this fogh,

where u represents the parenthesis in (10), and when » bggothes

infinite, all terms in « vanish except the first, so we have D)
lim ma(f) = et ~\ N (1}
i~ < 3

Hence in the limit z has the same moment gt=.1le.1"zyt.ifxgS Funetion as y

and, by virtue of the statement at the end of Shdh 5.4, hus {he same

1.5 LETE L5 n=3

}
Ko )] )

. \,\“ F1c. 36,
d}StI?but%QE\‘~ Thus in the limit the sample mean must have the normal
dlstrlbqf{{})n whatever the distribution f(z}, provided that f(z) has a
m?"fr%egb generating function, or more generally, provided that f{(x)
ﬂg ‘Second moment. And for large #, we may say that the sample

nedn is approximately normally distributed.

The degree of approximati i
tion depend ' B 48
and on the partic o), T e e

saeon ular density function f(z). The approach to normal-
:3’}1; 11]1r_1rsgsrate<11. dm Fig. 36_f0r the particular fllljfction flx) = €7
dashed curvissohlr .ti}iuwes give the actual distributions, while 'the
distribution W]%i }? etnorma,l approximations.  (a) gives the Origm.al
fribution of Ch corresponds to samples of one ; (p) shows the dis-
ton ot sample means for 5 = 3. {c) gives the distribution of
138 )




NORMAL APPROXIMATION T0 THE BINOMIAL DISTRIRUTION . 87.7

sample meansforn = 10, The curves rather exaggerate the approach
to normulity because they eannot show what happens on the tails of
the distribution, Ordinarily distributions of sample means approach
normalily fairly rapidly with the sample size in the region of the mean,
but maore slowly at points distant from the mean; usually the greater
the distinee of a point from the mean, the more slowly the normal
approxiniation approaches the actual distribution. _

The vend ral-limit theorem applies to diserote as well as to continuous
distribuiiong. The moment generating functions used in this sectio
could hive been moment generating functions for diserete digtritng:
tions, and (he argument would have been just the same exceph. that
the intewrs = would have been replaced by sums.  We shall ingostigate
the nature of this approximation in the next section for alparticulsr
diserete diztribution. i e \ I

7.7. Normal Approximation to the Binomial Distribution. We
shall consider the density ' ’

@ = pgr v = 0,m M

which hus ,\
p=p o =gy (2)
and suppose a sample, zy, Z, -+ O :35,,,, of size n i drawn. Tho

sample will simply be a scquence ofzeéros and ones in this instance, one
denoting » success, say, and zero™a failure. And

4

o
\'\‘ 7B = % Z T

I8 the proportion ofsuetesses in the sample. We have seen that tho
mean and varian'@:of E are

\\ E@ =u=p 3)
O ot _ 9 _Pg (4)
'\': :" 5 * 7 "

The Histribution of 7 is discrete; in fact Z can take on only the values

12 oo
7

0,-3"‘""1
n

-and we kngw that the density of § is

= ()prs i=0n2 @
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Thus since j = n&, the density of £ 1s

o 1

h(f) — (??:E) pﬂsgﬂ(l—-};) F = 0’ a’ L 1 (6)

The way in which this discrete density is approximated by s con-
tinuous density function is iflustrated in Fig, 37.

Suppose we construct rectangles of heights (2} and widths 1,1 with

mid-points of the bases at j/n, j=0,1, 2, - - -, n. The wopz of
N
11 R
.‘7[3}--\3_!—-’_ o'\“\’
e N\
AX) W
—r— R
= /
1 3 i
-l | I S
O & & Foe 4 o\ A F g

these rectangles form a broken cu;ivjé which we may represent by ¢{E].
Since Zh(Z) = 1, the area undetig(Z) will be 1/n. Tt is clear that

A A (B35} -
P (-— P 4 —) = f E)dz (7)
G K\ " la—14)/n g( j
for any infegers a\ﬁi.ld b(b > a) in the range of j, since the integral is
simply the arcaqiiwder the tops of the rectangles over the points  to b
and is ther(:sfqie\

N £ 1 1x
Q 2 Mmi=1Y ”i) pigni (8)
AN E=d/n RSN

.\ : :
\.ds 7 becomos large, the width of the rectangles decreases and the
steps in the funetion ng(%) become closer together so that it has the
appearance, say, of the function in Fig. 38. The normal approxima-
tion to the binomial distribution may be regarded as the limiting form
of this broken curve as » becomes infinite,

~This normal approximation is of parlicular interest beeause it pro-
vides a method of computing easily the approximate value of sums of
t]:le .bmomial distribution. Ag an lustration, let us suppose a true
die-is cast and a one or a two counted as a success. Then p = 4,

i40



NOUMAL APPROXIMATION TO TRE BINOMIAL DISTRIBUTION 87.7

g = 2. E"r_:‘r a sample of 300 trials, the total number of successes, j
has the density i

oo (300N 1Y F2\0F
)= J g § 3= 0, ]_, e ,300

Supposnz_ we wanted the probability that the number of successes will
not deviate from 100 by more than 15; we should have to sum f(y)

o \:;\ 1z, 38,
LA
over the range 85 to 118, a very tedious caleulation. We can approxi-
mate the sum hysung the fact that

F’;: "w 1 85 j 115
NI <5 < 115) = P(?Toﬁ <300 = 3@)

and Silee?iif = 7/300 iz approximately normally distributed with mean
%{r‘;w@arianve 14 X 2§ X Y400, we have

~ 113g _ =
P8540 < 7 < 113400) & _ﬁé/) " n(#; 75, 2arao)dz
400

- 8400 ] 1 e—}(n‘:—%)’/%?no dz
= 5500 2r %TBD

and letting z = (z — Y4)/v/ 24700, we have

85 . - o 115 N[“Si 1_ s gy
P < < U=
(300 =02 300) ~1e V27
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singe

(500 = 1) oy 1gs (Moo =10 g
V28700 V24700
Using tables of the normal distribution, we find
P85 <7< 115) = .934 (9)
The approximation ecould be slightly improved by using 85 — 1y and
115 4 14 in computing limits on the integral as indicated by (71
In general, for the binomial distribution, it is now cvidenl that

b

PE<j<h) = Z (n) gt O 00

’ i=e g NS ¢
' R L T S
@’ ‘\/ﬂ . , "‘ ’ I.

where g 'mz\‘

o=@z —p g ORI —p gy
Vpg/n K7 o Py

A more detailed investigation would Sh& that the error in this
approximation is less than '
ER
_ Vg
provided npg > 25. Thus in'the above example our maximum crror
is measured by \

i13)

£ 3

) 18

50 that the appraximation (9) does not quite have two-place accuracy
in so far as v{e\ba’n judge by (13). MMore accurate approximations are
provided byBspensky (*‘Introduction to Mathematical Probabilily,”
Chap. VAT; MeGraw-Hill Book Company, Ine., New York, 1937).

) 7.84Role of the Normal Distribution in Statistics. 1t will be found
in \t;he ensuing chapters that the normal digtribution plays a2 very
*Qredominant part. Of eourse, the central-limit theorom alone ensures
that this will be the case, but there are other almost equally important
reasons,

In the.ﬁrSt place, many populations encountered in the course of
resoarch in many fields seem to have a normal distribution to a good
degree of ‘ app{‘oximat-ion. It has often heen argued that this phe-
nomenon 18 quite reasonable in view of the central-limit theorem. We
may consider the firing of a shot at a target as an illustration. The

142
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eourse of the projectile is affected by a great many factors all admit-
tedly with small effect. The het deviation is the net effect of all thege.
factors. Supposc the effect of each factor is an observation from some
population; then the total effect s essentially the mean of g set of
observitions from a set of populations, Being of the nature of means,
the actually observed deviationg might therefore he expected to be
approxitiuately normally distributed. We do not intend to imply here
that most distributions encountered in practice gre hormal, for such
s not the case at all, but nearly normal digtributions are encountered
quite frequently. N

Another consideration which favors the normal distribution\ig the
fact that sampling distributions based on a barent normal disfl'ibution
arc fairly manageable analytically. In making inferencesabout popu-
lations from samples it is necessary to have the didttibutions for
various [unetions of the sample observations. Tﬁe “mathematical
problem of obtaining these distributions is often caste¥ for samples Trom
& normal population than from any other, N

Becanse all thege auxiliary distributions Are’required in statistical
inferenee, the ceonemical thing to do ig ehtain them for one kind of
population distribution only, Whnn':ahnther kind of population is
‘under examination, the observationsimay be transformed so that they
follow the distribution first chogens” The normal distribution I8 the
logical candidate for this choics” Thus if a complete theory of sta-
tistical inference is developet\Dased on the normal distribution alone,
then one has in reality 3 &¥stem which may be employed guite gen-
erally, hecuuse other distributions can be transformed to the normal
form. O

In applying statiétical methods baged on the normal distribution,
the experimentepirust know, at least approximately, the general form
of the di.‘stri{xﬂfﬁm function which his data follow. If it is normal, he
2y usc ihMhethods divectly; if it is not, he may transform his data
50 that e transformed observations follow a normal distribution.
Whon Gle experimenter does not know the form of his population
diSiJIil}l.ltiL)11_ then he must use other more general but usually less
poweiful methods of analysis called distribution-free methods. Some
of theye mothods will be presented in the final chapter of the boek.

79. Problemsg B
L. Tu the joint distribution p=+egr—=—= for a sample of two from a
binomia) population, let @y = y — 2 and find the joint dIStrlbUt’mn

of Y aﬂd X,
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. 9. Find the marginal distribution of ¥ from the results of the above
problem.

3. What is the probability that the two observations of a sample
of two from a population with a rectangular distribution over the unit
interval will not differ by more than one-half?

4, What is the probability that the mean of a sample of two obser-
vations from a rectangular distribution (over the unit interval} witl
be between 14 and 347

5. What is tho probability that the larger of two random observa-
tions from any eontinuous distribution will exceed the median? ~

6. If z; and z; are a sample of two from a population with densby
f(z), and if the smaller of these values is denoted by y, and theNdyger
by #», what is the joint density of y and y.? O

7. Generalize the result of Prob. 6 to samples of sizgmg leliing i)
be the smallest and y; the largest of the n obsewationsf\ﬂ

8, What ig the marginal density of the :.-‘,Ina-llcs“t-:,\obsel'\'m‘.if)sl for
samples of size n? \

9. Considering random samples of size n, f}*&m a population with
density f(z), what is the expecled value of slie area under f{x) to the
left of the smallest sample observation? {\"

10. Balls are drawn with replacemanig from an urn containing one
white and two black balls, Let x =\0'for a white ball and = = | for
a black ball. For samples z,, a;g,:',:'- +, @y of size nine, whal is the
joint distribution of the obsgryations? The distribution of the sum
of the observations? PAN

11, Referring to Prol{\’kﬂ’, ind the expected values of the sumple
mean and sample vapignce.

12, For Sﬂmpleg\’of size fwo {rom a population with variance &%
show that the expseted value of the sample vasiance is ¢%/2.

13, GeneruliZethe result of Prob. 12 to samples of size =.

14, W};m'} value of ¥ minimizes E (z: — )22
N\ 1

£ '\. ’ 7
\15‘3 Tz =(Q1/m) E z;, show that
_ T

d

;(«’Cé — = ;(Ii — I 4+ n(E — u)?

E'fsing thi? result a:nd that of Prob. 14, explain why the sample variznee
gives a biasod estimate of the population variance
18. Tind E(ms) for .

i . gamples of size two from a ation with a
finite third moment, & populatio
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17. Show that El(1/0)2(z; — #)] = p, for samples of size n from a
population with mean x and rth moment, y,.

18. Use Tchebysheff's mequality ta find how many times g coin
must be tossed in order that the probability will be at least .00 that z
will lie between .4 and 6. (Assume the coin is true.)

19. TTow could one determine the number of tosses required in
Prob. 18 more accurately, i.e., make the probability very nearly equal
t6 907 What is the number of tosses?

20. Tf & population has ¢ — 2 and # is the mean of samples of &%
100, find limits between which Z — g will lie with probability .90 .Use
both Tchobyshef’s inequality and the central-limit t-heomqlf“k’\*’hy
do the two vesults differ? N

21. SBuppose 2, and z, are means of two samples of &ize n from a
bopulation with variance o2, Determine # so thag the probability
will be about .01 that the two sample means will differ'by more than o,
{Consider the variate ¥ =5 —3) \

22. Suppose light bulbs made by a standard p}ocﬂess have an average
life of 2000 hoyrs with o standard devistion ol 250 hours, And sup-
pose 1t is onsidered worth while to replade the process if the mean life
can be inercused by at least 10 per centy < An engineer wishes to test a
Proposed new process, and he is wiﬂiihg to assume that the standard
deviation of the distribution of. Ii‘ves i8 about the same ag for the
standard process. ow large.a stmaple should he cxamine if he wishes
the probability to be about JdIhat he will fail to adopt Lthe new process
i in fact it produces bul Suvith a mean life of 2250 hours?

23. A reseurch wor]gokwishes to estimate the mean of 4 population
using a sample largg, suough that the probability will bo .95 that the
sample mean willwgt diffor from the population mean by more than
25 per cent of .%iéétanda-rd deviation. How large a sample should he
tako? \J

24 A polling agency wishes to take a sample of voters in g given
gtate 1&11'{,'1”:(}’;enough that the probability is only .01 that they will ind
the pmjp(n-t-i on favoring a certain candidate to be lesg than 50 per cent
wheihit fact it is 52 per cent. How large a gample should be taken?

25. A standard drug is known to be effective in about 80 per eent of
cases in which it is used to treat infections. A new drug has heen
found effeetive in 85 of the first 100 cases {ried. Is the stperiority
of the new drug well cstablished? (If the new drug were equally
effective as the old, what would be the probubility of obtaining 85 or
more suceesses in a sample of 1007)

26. A howl containg five chips numbered from one to five. A samplo
of two drawn without replacement from this finite population is said
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to be random if all possible pairs of the five chips have an cqual chance
to be drawn. What is the expected value of the sample mean?  What
is the variance of the sample mean?

27. Suppose the two chips of Prob. 26 were drawn with replacement,
what would be the variance of the sample mean? Why might cne
guess that this variance would be larger than the one oblained hefore?

28. If a density f(z) has a moment gonerating function m(z), show
that the mean of samples of size # has the moment generating function
[m(é/ )] N

29. Use the result of Prob. 28 to show that the mean and yaNance
of the sample mean are u and o%/n. (\)

30. Find the third moment of the sample mean for sa.mplés of size n
from a binomial population. Show that it approaghes zero as »
becomes large (s it must if the normal approximatiGhvis to be valid),

31. SBuppose the life of 4 certain part of a ma.chm}\ié digtrihuted by
01e7% where ¢ is measured in days. The madiine comes supplied

" with one spare. What is the density of thesgdmbined life of the part
and its spare? L

32. Generalize Prob. 26, considering’AN¢hips and samples ol size n.

The variance of the sample mean is,\ o

2N n
WY — 1
where o is the population{Fariance,

3
&\
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CHAPTER 8§
POINT ESTIMATION

&78.1. Estimation of Parameters. The estimation of parameters is a
primary purpose of all seientific experimentation, and before formuytat-
ing the problem precigely, it may be worth while to consider briefly
its practical implications. ' RAY.
Suppose a plant breeder wishos to determine the gengr’a.l\ yielding
ability of a new hybrid line of corn in some agricultural pegion. To do
this, he selects a number of farms in the region and gbPains the yields,
say in pounds, of small plots planted on each of ,su}éral farms. He
thus obtains a set of obscrvations, say 45, 27, S8y 34, 59, 40, « « - |
The average of these numbers gives u measupe el the yielding ability.
This average is an estimate of the meun 4.0f Yome population with a
dengity f(z).  Of course the population hesds to be carcfully spectfied,
Were the farms selocted at random? \ Did the farmers cultivate the
plot along with the rest of the crop, Ordid the plots have gpecial treat-
ment?  What were the weather génditions in that scason? And 5o on.
But leaving aside these questions and assuming randomness, we
regard the experiment as a rawing of o sample from a population with:
density f(z) for the pur ofeof estimating the mean of the distribution.
inee the observati onea erc obtained only to the ncarest pound, the
distribution is, in .fa:g’t;, discrcte. However, for measurements {(asg
opposed to countings) it is customary to think of a continuous distribu-
tion.  The obsérvations could have been obtained more accurately,
but any effeft in that direction would have been wasted because the
sampling €rvor of the estimate would well exceed crrors of rounding
to the .Qb}ifrest pound. In this connection, however, it is not always
possibio’to reduce errors of measurement well below the magnitude of
sampling orrors. Thus a metallurgist studying thermal expansion of
some alloy might require a very accurate measurement of the fenpth
of a rod and make several observations in inches, say 8.562, 8.564,
8.563, 8.563 - - - , with preeision equipment which can measure to
within about .001 inch. His distribution is diserete (defined at inter-
vals of .001) and cannot be refined; this disereteness may be the major
Source of the error of his estimate.
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In general, the estimation preoblem may be stated as follows: One
is investigating a population with a density function f(z; 6., 85, - - - ,
6:), where x is the variate and &, 8, - + -, 8 are parameters in the
digtribution. Thus in the case of the gamma distribution there are
two paramcters which we have called & and 8, and in the present neta-
tion we might exhibit the parameters by writing the gamma density
a8 f(z; «, 8). On-the basis of a random sample of observations, By
Ty Tyttt Fay One wishes to estimato one or more of the parameters
61, 3, * + +, 6. The problem here is to find functions of the obs@isa-
tions which wemay represent by 81(zy, 20, * « + | z.), B2l Ly, " A ),
*, such that the distribution of these functions will he ccu\ff;t’ll‘{..n-ited
as closely as possible near the trye values of the paramoterss We shall
call such funclions estimators. We have already sced“or example,
that if the parameter to be estimated is the populatioh mean g, then
the funetion ‘)

- - 1 .
-”'(xl! Ly » 0 v :xﬂ) = £ ::QE b {l)

is an estimator for 4 and that the distriby$l ﬁ)} of fi actually does hecome
closely concentrated near the true meah : for large samples when the
population variance cxists.

In speaking of the cstimation of vparameters, the moments of o dis-
tribution are usually intended¥6 be included by the term ‘“‘param-
eters” even though they mé3not enter explicitly in the distribution
function, The moments@l ordinarily be functions of the parameters
which do enter into the functional expression of the distribution. and
once those parameters are estimated, corresponding functions of those
estimates will egfirpate the moments. Of course, the moments can

- also be estimated-by means of the sample moments as indicated in the
preceding cliapter.

Any estitnate of a parameter is naturally subject to the eivors of
samp}ipg, and it is important to make some statement about the pos-
sibld Size of the error when giving an estimale. We shall defer the
s’tl.}&‘y of errors, however, until a later chapter and consider here only
pomnt estimates, i.e., single-valued estimates, as opposed to more gen-
eral estimates which merely specify the parameter to be within a

*yir(ne interval.

& 8.3. Properties of Good Estimators. "To consider the case of a sin-
g_le parameter for simplicity, suppose we have a random sample of -
5126 1 drawn from a population with g distribution f(x; §). There are
infinitely many ways of choosing an estimating function §(xy, 2, * -
%a), and our problem is to choose a good one. Intuitively it is clear
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what is meant by “good’’'—the distribution of the estimator should be
concentrated near the true parameter value 6. Thus if b, 82, 85 are
different estimators of 8 with densities g;(8,), ga(8s), go(s) as illustrated
in Fig, 39, then 6, Is clearly a betier estimator than either f, or 8;, and
s is better than §; even though it is biased to the right.

Onc method of comparing two estimatorsis b y their relative efficiency.
If an cstimator 8:(2y, 22, - -+, 2.) has E(fy — )% = Ay, and if a
second cstimator 8y(2y, xs, - -, %) has E(f, — 6)? = A, thon the
efficiency of 0, relative to 6, is defined to he 4,/4 2; the ratio is usually
oxpressed as a percentage. If the efficiency of §, relative to dpde
greater than 100 per cent, then §, may reasonably be regarded s a

% . NS ¢

R~

AFia, 39.

better estimator of 8 t-haui'{?; It is to be noted that A, and 4, will

t be the variances of fyhnd 8 unless E(8,) = ¢ and F(d,) =0
jb‘everal terms have ‘gome to be commonly used to describe esti-
mafors, and we shallldefine them now.

i Unbiased. I AR ‘estimator 8(zy, zs, + + * , 2,) for a parameter 8 is
such that \"\ '
N\ E@# =4 (1)

then § i9hid to be unbiaged. If E(8) > 6, the estimator is said to be
pr}."fﬁie'ly biased; while if E{#) < 8, the estimator is said to be nega-
tively’ biased. In constructing estimators, it is obviously of some
advantage to construch an unbiased estimator, but this is not a very
crucial requircment. If the mean of an estimator dilfers but little
from the paramcter value relative to the standard deviation of the
—estimator, the estimator may be quite saitsfactory,
& Consistent. If an estimator 8(zy, s, * * * , @) for a parameter 8
ig such that _ : _
' Pl —1 asn— w (2)
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then 8 is said to be a consistent estimate of . The symbolic eriterion
iz a way of stating that the estimate becomes near the true parameter
value with probability approaching one as the sample size increases
without limit. The sample mean F is an example of a consistent
estimator when the population variance is finite, for # has a variance
o*/n, and as # -> «, the variance of % approaches zero. Since

.'/ M

f“__\/.'j E (i) o
"1 for any 7, it follows that the distribution of Z must become eateen-
trated at g when o2/n — 0, . .

A consistent estimator is obviously unbiased in the limitybut for
finite sample sizes it may be biased though in such a way thit the bins
approaches zero as # becomes large. An unbiased egtimghtor may or
may not be consistent depending on whether or nd\tits distribution
hecomes concentrated near its mean as the samplé:,\size inereases.  In
estimating the mean, for example, we mi hi\define an estimator
f_? = 1, Where z; is the first observation of j:hésamplc; this estimato is

unbiased but not consistent. o\

1, Efficient.  In a great many estimagieh’ problems it is possible to
construct estimators 8(xi, x5, © - + 44}, such that \/n(f — ) has a
normal distribution with zero me,ai};i in the limit as the sample size n

Jwreases. Confining our attenfion to this cluss of estimators (and

assuming such a class exists), there may be one or more estimators

which will have a limiting(ariance which is smaller than the limiting
| variances of the other gstimators. These estimators which have the

} smallest limiting var‘iea%ce are called gfficient estimators of .

It can be shownyfer example, that for gamples drawn from a normal
population witly ?ﬁcan #and variance o, 6, = % is an efficient estimator
cm.hm@%wmmmmmmm&vawwnmmmmm
zero mean\and variance o2, No other estimator can have a smaller
lim.iting.}ariancc. However, there are many other efficient estimators,
i‘g.\,: eftimators with the same limiting normal distribution. Tor
€xamiple,

. 1 o
e —-ﬂr———f-_l ,Zflx‘.

is efficient since it can be shown that V(B ~ 1) has a normal dis-
tribution with zero mean and variance ¢2 in the limit as # becomes
large. 1t s to be observed that 8, is biased, since

E(fy = T
(02) n + 1)
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and in general efficient estimators need not be unbiased for finite

samples though they are clearly unbiased in the lmit. Efficient

estimators are necessarily consistent.

- /Suﬂirwnt An estimator is said to be sufficient if it contains all the
< information in the sample regarding the parameter, More precisely,
if 1, x9, - * -, %, 15 & sample from & population with density f(z; 6)
and if 8(xy, T2, * * * , T,) is an estimator such that the conditional dis-
tribution of i, 2, * * + , ¥ given & does not depend on 6, then 4 is a
sufficient estimator. This means that the joint density of the sample
may bhe put in the form \

u _ O\

11 Jlas; 0) = glay, o - -, wlBr(B; 80 (7 3)

t

wheve the function g does not involve . In this form it igclear that no
other function of the z; ean provide any informati{?ﬂ\about 6. For
* consider any other function of the xi, say w(zi %%+ * + , 2.). The
distribution of  for a fixed § will be deterraited by the conditional
density g(xy, s, * - * , 2,/8) and will have 2%t not 6 as a parameter.
Hence » can only provide information abetit 8. But § is known in
any given problem, so that any information provided by % is of no use.

Suflicient estimators are obviously“the most desirable kind of esti-
mators to have, but unfortunately they do not exist except in rather
special cases. Ordinarily we shall have o be content with less
satisfactory estimators, &

We have defined all t-l;késé concepts in terms of one parameter, but
the extcnsion to sevéralparameters is straightforward. Thus if z is
distributed by f(z;#y6s, -+ + , 0u), & set of cstimators 0y, 65, - - -, &
is unbiaged if, Iit)r‘ta\\rer}' 1,

~O B = 6
The sct igs&j‘sistent if, for every ¢, .

NS P, —8)— 1 agn— w

whepé n is the sample size. The set is sufficient if

f(fﬂa';_ B, 8, * - -, ) =glzg, s, * - - ,xnléhéz, T ,ék)
=1 .
R(By, 8y ¢ - ¢ k300,00 - 0 0, 0

1

The generalization of the meaning of cfficient requires some knowledge

of the multivariate normal distribution, a distribution which we shall

study in the next chapter. If k variables wi, us, * * *, u have a
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multivariate normal distribution, it ean be shown that there are line
" » Vi of the u; which are independent in the proh-

functions ¥y, Vs, » - it i1
ability sense and each of which has the simple normal distribution, so

that the multivariate normal distribution of the s

POINT ESTIMATION

ar

may be writien

as the product of % single-variate normal distributions of the ¥,
(This is fllustrated in Prob. 25 of Chap. 9.) A sct of estimators ig
efficient if v/ (f; — 6) have the multivariate normal distribution in
the limit as the sample size increases, and if the linear funetions V;of

the v/n (§; — 8) which are independent in the prob

ability SCNSeare

such that the product of their variances is a minimum.

3. Principle of Maximum Likelihood. To intr
shall consider a very simple estimation problem,
contains & number of black and white ballg,
numbers is three to one but thuatNt 15 not known
whether the black or the white balls are the
the probability of drawing a black ball is cithor
are drawn with replacement from the urny

that the ratio of the

N
oduce theliden, we
Supgost an urn
and suppesg it is known
NN

\. .
moraaumerons.  That i,

7 or 34, I n balls

{t}ie distribution of the

¢

number of black balls is given by the bingfaial

where g =
We shall

A = ()

mation problem is pa ieularly
only to choose between

the result of the

¢ two numbers .25 and 75,
drawing of the sample,

&y

1 — p and p is the pr}’g‘lﬁbility of drawing a black bull.
draw a sample of thiee balls with replacement.
to estimate the unknownmp@.rameter p of the distribution.

and atlempt
The esti-

simple in this case because we have

Let us anticipate
The possible outcomes and

their probabilitids%hder the two possibilitics are given below:

N\

The principle of maximum
sample is representative of
precisely later,
of three,

’\\Z“.

&
* ';
S

'S
N oo

h Y
4

Is

O
"y -' I
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By L1 5 27 | o7
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likelihood essentially assumes that the
the population.

Iun the present example, if we
the estimate .25 for P would be preferred over .75 because

We shall state it more
found z = 0 in a sample
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the probability 2744 is groater than 14, i, e., because a sample with
2z = { is more hikely to arize from g populatmn with p = 1 than from .
one with p = 34,  And in general we should estimate p by .28 when
z="0orl,andby .75 whenz = 20r3. The estimator may be dehned
28

plz) = 25 =01 - (2)

= .70 =2 7

)

The oxtimator thus seleets for every  the value of p such that | A

Jlx; 8) > f(z; ) O
'N\S “
where p° 1s the alternatlive value of . \
More generally, if several alternative values of p werfe pOSSIblP, say
p =1, 0.2, 0.3, -, 1.0, we might rcasonably {Proceed in the

BAME Nianner. Thus if we found z = 6 in a sdmple of 25 from a
binomial population, we should substitute all postible values of p in

the expression K \\

25 Q.

f6;p) = (6) PPy p)t 3)
and choose as our estimate tha-t’,xjéllﬁe of p which maximized f(6, p}.
For the given possible values gfp we should find our estimate to be
B(6) = .2. If there were ngrestriction on p except that 0 < 7 <1,
then f(6, p) would be log&f&ed a8 a eontinuous function of p over the
given Interval and thdposition of its maximum value would be found
by putling its derivative with respect to p equal to zero and solving

the resulting equaizlon for p. Thus,

.@é}ts; 2 = (%) - 2060 ~ ) — 108 @

and oq};iﬁtting this equal to zero and solving for p, we find p = 0, 1,
S#5N\re the roots. The first two roots are impossible as far as the
Q%En sample iz concerncd, and our estimate is therofore § = 945,
This estimate has the property that

7(6; ) > (8; p") ' _ (5)

where ' i3 any other value of p in the interval 0 < p < 1.
The principle of maximum-likelihood estimation is simply this:
AL f(xs, wo, + - -, o) 8) 15 the density for o random semple of size n
dravwn from a population with an unknown parameler 8, then the mazi-
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mum-likelihood estimate of 0 is the number 8, if it exists, such that
f(xls o T y Ty é) >f(x13 Tg, * ¢ y Tay 6!)

where §' is any other possible value of 6.

While we have been discussing a discrete distribution in particuiar,
the principle is the same for a continuous distribution. Suppose x is
continuous and hag the density f(z; ). The probability that  will He
in & small interval Az is approximately f(z; f)Az. Given a gample of
one observation, z;, we may choose arbitrarily a small interyul Ae
about z; and maximize the probability f(xy, #)Ar as a functidu of o,
Howcver, since Az is arbitrary, it is not a function of adhbehuves
as g constant in so far as variations in 0 are concernedy™ Hence in
the maximization we may disregard Ar and deal oniy avith f {1, 6).
The conelusion is obviously the same for samplegsof thore than one
observation, “‘"\ s

The function l__[f(:t‘:,;; 8}, which gives the Saimpie distribution when
1

regarded as a function of the 2, is regarjdé:(f‘as a funetion of ¢ for fixed
values of the 2, in determining the magipmum-likelihood estimate of 6.
When regarded as a function of 8, tHe exprossion is often referred to
13 the likelihoot] function of 8. 'Tlié maximum-likelihood estimate of
8 is therefore the point at whichithé likelibood funetion has & maximum.

When more than one parameter is involved, the maximum-likelihood
estimates of the parametQ-s are defined similarly. Thusif a sample of
size n has the density,

LA
O Hf(-’f-a';ﬁl,- b2, -+ v, B)

Qs i-1
R )
then the maﬁmum—ﬁlfelihood estimates of the parameters arc the
numbers\éfl\ﬁé, * 0, 8 if such g set exists, which maximize the given

expression’ as a function of the 4, It often happens in practice that
one \x}@ishes to estimate some but not aj| of the unknown parameters

of ‘@ )distribution. Usually it turns out that the maximizing values
Hor the desired set of parateters depend on the remaining parametors,

50 that it is necessary actually to estimate all the unknown parameters,
vl 84 Some Maximum-likelihgod Estimators. We shall obtain in
this seetion maximum-likelihood estimators for parameters of some

of the common distribution functions, Ordinarily the purameters
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Since likelihood functions are products, and since sums are usually
more convenient to deal with than products, it is customary to maxi-
mize the logarithm of the likelihood rather than the likelihood itself,
e, to maximize

L =tog Il ftoi; 0) = 3 log f(as; ) o
fml i=1

Of course the logarithm of the likelihood has its maximum at the same
point 28 does tho likelihood. '
~" Binomiol,  Suppose gamples of size # are drawn from the binomial

distribution A
Jee;p) = pg=  ==0,1 AAA2)
The sumple values, x1, 2, * * -, 2y, will be a sequence of, z8fos and
ones, and the likelthood is AN 3
n N\
H pz.-ql—-z.r — pzz;qn—Zﬂ N7 (3)
fm=] L . .'\\‘:
and letting y = Zu, we have ' ¢*L
L=ylogp+ (n —yNog g (4)
dL. a0y
- == —.“.._'.._' . ) 5
dp ??vv,.‘; g ®)

remembering that ¢ = 1 — p. On putting this last expression equal
to zero and solving for p, we find the estimator

Oy_1 w = % (6)

- which is, of course, the/obvious estimator for this parameter.

We can show thaf“this estimator is sufficient and therefore that it
would be fmi@léé%‘%’o search for a better estimator for the parameter.
We necd to hiew that the conditional distribution of the = given 7 is
independg;fb of p. Since the marginal distribution of nZ = y iz given
by 08T »

O (;’) vl _ (7)

the conditional distributioﬁ of the x; given y is obtained by dividing
1

(3) by (7) to get, say, )
o gla, xe, o, zlp) = 7an =0, 1; 2z = np (8)
(%)

& distribution which is independent of the parameter y
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Normal. Samples of size # from the normal distribution have the
density

"o 1 J 2 X
H \/‘2__ g (L) (a)® = (2}0»—2 g (17267 2l gi—p}3 (9)
. T F

im]

The logarithm of the likelihood is

n 1 ”
L=—glog%—élogag——%zZ(:c;—p} (10
- .. 3 ’”\
To find the location of its maximum, we compute )
' ne.N
ol 1 LW
=), @ w) O ay

-
N

oL nl | 1 AR
el PR Y RC RO
and on putting these derivatives equal to zero agd S0l ving the resulting
equations for ¢ and ¢% we find the estimatafs,

(12)

19 \S
b= Z S (13

i ™
§* = 12(;1: — ) (14)
which turn out to be the sgmple moments corresponding to g and o2
The estimator £ is unbiased, but 42 is not, sinco

.\'\s.f

O E(éz)“n_l ?

— ¢ (15)

We shall see aﬁga\r' that this pair of estimators is a sufficient pair for
estimating #hé’parameters; the sample distribution for given values of
il :m.d f.‘r}{ioés not involve u and «2.  We note in this cage that it is
possiblg to estimate p without estimafing #2, but not possible to esti-
rr}\aﬁecr"" without first estimating u. * '

A\ ’E,f'm'form‘ The density for samples of size n from the uniform distri-
- huticn over the range o << & < 3 is

1

B (16)
80 that @~ e
L= -nlog (8~ a) (17)

If we put the derivatives of this expression with respect to o and 3
. equal to zero and attempt to solve for @ and B, we find that at least one
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of &, 8 must be infinite, a nonsensical result. The trouble here is that
the likelihood does not have zero slope at its maximum value, so that
we must locate 1t8 maximum by other mcans. It is evident from {16)
that the Likelihood will be made as large as possible when #— ais
made a5 small as possible. Given a sample of n observations Xy, g,

" ¥n, SUPpose we denote the smallest of the observations by z'
and the largest by 2. Clearly « can be no larger than 2’ and 8 can
be no smaller than 2; henee the smallest possible value for 8 — ais
" — &', The maximum-likelihood cstimators are obviously

N\
A !
& =ux 18
" "\“{\ )
G = a\ Wy
3 N
a somewhat eurious result because no use is made of the(intervening
observations, K¥s.
‘..,.\\
L&) ¢

&

Fia. 40,

These 1;hr’e{?:iémplcs arc sufficient to illustrate the application of
the methodloP maximum likelihood. The lust example shows that one
must n.ot-fr'ély on. the differentiation process to locate the maximum,
The/fanetion L(6) may, for example, be represented by the curve in
Fig, fj, wherc the actual maximum is at 8, but the differentiation
process would locate ¢ a8 the maximum. One must also remember
that the equation al/26 = 0 locates minima 2s well as maxima, and
hence one must avoid using & root of the equation which actually
locates a minimum.

We have not illustrated the cstimation of a parameter which appears
as a factorial in the distribution function. This may be done in any
given problem with the aid of tables of the derivative of the factorial
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functien. However, such a problem arises so rarely that it is not worth
while to study it here, The parameters—# in the binomial distyihu-
tion, @ in the gamma digtribution, and « and 8 in the beta distribution
—are ustially determined by the sample size and need not be estimated

ince the sample size ig ordinarily known.
/é 8.5. Prqperties of Maximum-likelihood Estimators. There js no

general argument which will show that maximum-likelihood estimuiors
are the best possible estimators. There is, in fact, no way of dealing
with the estimation problem (or any other problem requiring indue-
tive inference) completely within the framework of the theory W I}mb-

ability. The theory of probability 2s a branch of mathemhtics i a
deductive science-—given certain axioms, eertain conclusions ncces-
sarily follow. Uncertain conclusions are outside they t8alm of the
theory. If is preciscly here that statistics departsfrom that theory
and bocomes an independent discipline. New a}gii).mé are reguired to
deal with the problems of statistics; onc su¢hNdxiom might be ihe
prineiple of maximum likelihood. Whetherthe new axiom is good or
not from the practical viewpoint is, of ¢ u’rﬁa, of no interest from ihe
strictly logical viewpoint. When a nef¥ dxiom is added to a given set
of axioms, a new theory involving adgﬁti’onal theorems arises, and from
the logical viewpoint the only reglifivement of the new axiom is that
1t be consistent with the other akfoms.

"‘ We cannot, therefore, hoped’ prove that a new axiom or principle is
right or wrong, From thé practical viewpoint, we naturally want an
axiom that will give riss{”s}) & useful theory of estimation. 1In framing
such a principle, gneéSwrould first consider what he wanted the theory
to do in practicg In terms of certain intuitively desirable criteria
{unbiasednessydeusistency, for example) and then try to formulate a
principle whigh“vould lead to such a theory. ~ The principle of maxi-
mum hkeliliotd, which is due to k. A. Fisher, forms one basiz for a
theory ¢festimation. Other principles would lead to different thoories.
A chdi¢e between principles is, in thelast analysis, a matter of opinion

) asjtp\' what is a good theory, After examining the propertics of maxi-
mum-likelihood estimates, it will become apparent that Fisher's prin-
cip.Ie lez?st to & very useful theory, and that for general purposes of
estmfla,tlon there is little if any room for improvement in the theory.

Bias. Maximum-likelihood estimators are not, in general, unbiased,

as we have already seen in the case of the variance of a normal popula-
fion where

B(s*) = E[iz (s — f)z] =2 ; 10'2 (1)
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In this case the estimator could be made unbiased by multiplying it
by n/(n — 1) to obtain the estimator .

which is an unbiased estimator of ¢2.  Andin general, when maximym-
likeliinod estimators are biased, it is possible to medify them slightly
so that they will be unbiased,

It sne requires his cstimators to be unbiased, he is using an addition;
principle which is somewhat in conflict with the principle of maximam
likeliheod.  While there is no particular harm in this (aside ffom =
miner Jogical inconsistency), there Is really nothing to be gaimed by it.
The ouly claim for unbiasedness as a good criterion is that, ii';:‘far{:es the
distribution of the estimator to be centercd (in the center-of-gravity
sense) at the true parameter value.  But one could just%\és well require -
the niedian, for example, of the distribution to bethe true parameter
value.  Or some other cemtral value might besgsed. The point is
that all one can ask is that the true parami & value be somewhore
near the center of the distribution of the cgffmator. He may choose to
define the center however he pleases [mean, median, point such that
(6 — 9)* is minimized], but as between ressonable definitions of
“eonter’” there is not much choicop® .

Maximum-likelihood estimatorsido, in fact, have the true parameter
vahues near the centers of the'g"distributions ; we shall not be eoncerned
if the parameter docs not,Happen to be at the exact center of gravity
of the distribution. B\

Invariance. A parficularly convenient property of maximum-Tikeli-
hood estimators isnphé fact that if 4 is the maximum-likelihood esti-
mator for 6, andi#u(6) is any single-valued function of 8, then u(#)
is the maximipi-likelihood estimator for u(f). This is easily seen to
be the casg%et

RN n
~O° L(8) = ) log f(:; 8)
\ ) 1
Instead of estimating # we wish to estimate u(#). The function u(4)
defires an inverse function @ = »(x).. The cstimator 4 for u is the
value of % which maximized Llp(u)]. Since the largest value of L
oceurs at @ = §, it follows that #(u) must equal 8, and hence that
4 = u(f), since u is the inverse function of v. _

On the basis of this argument we can conclude directly, for example,

that the maximum-likelihood estimator of the standard deviation of a
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normal distribution is
s [L E NN
¢ = /¢t - {z: — Z)

Similarly sinee the fourth moment about the mean for o normal popu-
Iation ig uy = 3e*, it follows that the maximum-likelihood estimadtor for
fix is

1 s |

fs =30 =3 [;&- z (% — 33)“] ~

not the fourth sample momont, m,, about the mean as might I},a}*\-'\c been

anticipated. Of course, ma could be used as an estimatopdar,;, but

an examination of the sampling distribution of f, and iy would show

that the former has a distribution which is more closely Goncentrsted
about p,. "G 4

In general, since the moments of a populatidn‘ete ordinaril y fone-
tions of the parameters that appear in the distribulion function, it
follows that the maximum-likelihood estimmfdors of the moments are
the same functions of the estimators ¢f $He parameters. Thus the
rth moment of a population with densibyf{x: #) will be somo funciion,
say p (8}, of 8. The maximum-likelihood estimator of the paramater
will therefore be pl(8), where 8 issflie maximum likelihood estimator of
8. \\

w-Sufficiency. Not all paralheters have sufficient estimators, bui i a
parameter does have sgfﬁe\i‘ent estimators, it can be shown fhai the
maximum-likelihood Eszbiiha,tor will be a sufficient cstimator. The
proof of this statement is of s somewhat advaneed mathemulical
character and v;-‘i]l“bé omitted,

wrEffictency. (MWhen we examine the large-sample distribution of
maximu Jdikglihood estimators in a later chapter, we shall =cc thal
under fairly general conditions the quantity +/n (f — 8) iz asymp-
totiga\lly‘nm‘ma]ly distributed with a finite variance ; furthermore no -
gtherasymptotically normally distributed estimator can have a smaller
vapiance. It follows then that maximum-likelihood estimators are
eflicient and incidentally are consistent cstimators,

All these properties show that the principle of maximum likelihood
leads to a very satisfactory theory of estimation. ITowever, perhaps
?he most important character of the theory from a practical standpoint
i qf a d.inerent kind, Ttis easy enough to set up in theory a system of
estimation by specifying cortain properties the estimators should have,
b}1t to find the actual functional forms of the estimators may be a very
difficult matter. The theory of maximum likelihood does not have
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any difficulty of this kind, The estimating functions are determined
directly by the maximization process. Thus the theory is eminently
satisfactory on two counts: it gives estimators which have desirable
properties, and the estimators are easy to find.

8.6. Notes and References. Fisher's paper in v'hich the principle
of maximum likelthood was first expounded is cited below. Before
the publication of this paper, the customary method for estimating
paramcters was the method of moments. If a distribution function

involved r parameters 8y, 8;, - - - | 6, this technique called for Anfling
the first 7 population moments as functions of the parametersa,
2\,
W 0 0 = [ e 0 o)

then equating the sample moments to these functi ons,,,ﬁ;i’d' solving the
resuliing equations for the parameters. In a few ing€ahces this method
gives the same estimators as docs the maximum Jilelihood method, but
generally the cstimators are differont, O
Fisher was able to demonstrate that his fiaximum-likelihood esti-
mators were usually far superior to t-h’b% chtained by the older
method.  Tn the second paper cited Below he further showed that
maximum-likelihood estimators could ‘not be cssentially improved.
Thus Figher virtually solved t-he,'xi'h"o]e problem of point estimation in
thezo two remarkable papers. 3%
l. R A, Tisher: “On the ‘wiathematical foundations of theoretical
statistics,” Philosqéhz’cal Transactions of the Royal Society, Serics
A, Val. 222 (1922), . _
2. R. A. Fisher: ‘Alheory of statistical estimation,” Proceedings of the
_ Cam-b-’r*’idg‘e Philosophical Sociely, Vol. 22 (1923).
8.17. Problemsf{t\
1. Is, i&ﬁsa-mple mean nceessarily an efficient estimator of thoe
populafion mean for every population?
~20.3f an cstimator is unbiased, can it be expocted, for repeated
ss&.ﬁlﬁng& to underestimate the true parameter half the time and
overestimate it half the time?

2o
8. For samples of size 20 find the efficiency of 7; = Z z; relative to
1

10
T2 = Ho Z x; as estimators of the population mean,
1 3
4. If 6 is & sufficient estimator of 8 and if x(#) is a function of 4, is

w(8) a sufficient, cstimator of u?
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6. Find the maximum-likelihood estimator for 8 given a snmplo of
size » from a population with f(z) = 1/8, 0 < z < 8.

6. The sample 1.3, 0.6, 1.7, 2.2, 0.3, 1.1, was drawn from 2 popula-
tion with the density f{z) = 1/8, 0 <z < 8. What are the maxi-
mum-likelihood estimates of the mean and variance of the population?

7. What is the maximum-likelihood estimator for @ in the dersity
)= la+ 1zt 0 <2 < 17

8. Assuming « known, find the maximum-likelihood estimator for
8 in the gamma distribution. Q

9. Find the maximum-likelihood estimator for the pavameier of

o AN

the Poisson distribution. A\

10. Find the maximum-likelihood cstimator for the varianc: of a
normal population, assuming the mean is known. ~‘

11, Find the maximum-likelihood estimator fg&t:h’e varance of the
gamma distribution, assuming « is known. 3

12. If z is distributed by f(z} = 1/8, 0 <B< B, and one cousiders
samples consisting of only one observatioh’s, then since £ () = 372
a reasonable estimator for 8 might he ﬁ;,\= 2z.  On the other hand,
the maximum-likelihood estimator for' Bis By =x Ts there any
choice between these two estimatorsion grounds of relative eflicien ey?

13. If » is normally distributf;g}. with mean # and variance ¢7 find,
for samples of size k, the maxitium-likelihood estimator of the point 4

sueh that Lm ﬁ(x; 2, ar?)(x“ = .05.

14. Itisshown in C,Q‘a,ﬁ 10 that the mean of & sample from a normal
population is exactly\mrmaﬂy distributed. Use this fact to show that
the sample meanyis4 sufficiont estimator of the population mean.

15. In genetltc-\Invest-igationS one frequently samples from a binemial
fla) = \{)\p”g”“‘” except that observations of 2 = 0 ure impossible,

50 tha’g{in fact the sampling is from the conditional distribution

C AN
N W _fm ngm-—z
QO J‘(x)—(m)l_qm £=12 - m
Find the maximum-likelihood estimator of p In the case m = 2 for
samples of size #,
16. Find the estimator for « in the density

2
f(x;a)=a—2(a-—x) 0<z <a
for samples of size 2.
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17. Referring to Prob. 16, what is the maximum-likelihood estimator
of the population mean?

18. An urn containg black and white balls. A sample of size n
is drawn with replacement. What is the maximum-likelibood esti-
mator of the ratio R of black to white balls in the urn?

19. Referring to Prob. 18, suppose one draws balls one by one with
replacement untif a black ball appears. Tet z be the number of
draws required (not counting the last draw). This operation_is
repeated n times to obtain a sample 24, 22, © + +, B2, What is e
maximum-likelihood estimator of R on the basis of this sample®,

20. Suppose n cylindrical shafts made by a machine are gelected at
random from the production of the machine and their diamieters and
lengths measured. 1t is found that n., have both',fmghsumments
within the tolerance limits, n1; have satisfactory lengths but unsatis-
factory diamcters, ms have satisfactory diameters but unsatisfac-
tory lengths, and mee are unsatisfactory as, $grboth measurements.
Zny = m. Each shaft may be regarded g{a. drawing from a multi-
nemial population with density ANV

e ps (L — p11 — P _,P:.zll)m 2y = 0,1, Zug = 1

having three parameters. Whdt are the maximum-likelihood esti-
mates of the parameters if T = 90, nyg = 6, flgy = 3, Aoy = 17

21. Referring to the ahdyve problem, suppose there is no reason to
belicve that defective digmeters can in any way be related to defective
lengths. Then the distribution of the x;; can be set up in terms of two
parameters: py, theMprobability of a satisfactory length, and ¢y, the
probability of :a\réa\,tisfactm'y diameter. The density of the x;; ig then

.u\:.
i gl - pall - g0 el
\ Zyg = W, 2xy =

ad
e

‘x\f"l“i.‘zﬂ~\'a.re the maximum-likelihood estimates for these parameters?
*3}9 tho probabilitics for the four classes differcnt under this model
from those obtained in the above problem?

22. A sample of size ny is to be drawn from a normal population
with mean gy and variance ¢3. A second sample of size nz 13 to be
drawn from a normal population with mean pp and variance of. What
is the maximum-likelihood estimator of @ = g1 — g2? Assuming the
total sample size n = n1 + %z Is fixed, how should the n observations
be divided between the two populations in order to minimize the

variznce of &.
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23. Buppose intelligence quotients for students in a particular age
group arc normally distributed about a mean of 100 with standard
deviation 15. The I.Q., say iy, of a particular student is to he cst)
mated by a test on which he scores 130. Tt is further given that test
seores are normally distributed about the true LQ. as a mean with
standard deviation 5. What is the maximum-likelihood estimate of
the student’s 1.Q.? (The answer is not 1300

24. A sample of size n is drawn from each of four normal populudions,
all of which have the samo variance ¢2.  The means of the fouipepela-
tionsarea + b+ ¢, a + b — e, —b+4ea—5h—e. WHEM e the
maximum-likelihood estimators of a, b, ¢, and ¢2? Q¥ sample

observations may be denoted by @y, 4 =1,2,8, 4, and _;{’;:‘"'1, 2, -
2. PPN )

25. Observations zy, @y, - - - s Zo are drawn ffom normal popila-
tions with the same mean 4 hut with different Wariances o, 6%, - -,

i Is it possible to estimate all the paramebers? Assuming the o}
are known, what is the maximum-likelihaodestimator of u?

26. Is ), the square root of the expréssion on the right of cquation
(5.2}, an unbiased cstimate of o7 O

2\
R\
, ’\';
B\
AN/
9\l
' M
N
R\
AN
a\"
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CHAPTER 9
THE MULTIVARIATE NORMAL DISTRIBUTION

9.1. The Bivariate Normal Distribution. The bivariate normal dis-
tribution is a gencralization of the normal distribution for a siigle
variate. The density has the form A\ ¢
4 \

&= okt et O i s
f(x_? g) = —-—-—1——8 2(1— Pz)[( ) S ( #) .]

2na,0, V1 — p?

and may be represented by a bell-shaped f-surfaca,‘&‘— f(l ¥) a8 in
Fig. 41. Any plane parallel to the z, ¥ planc whigh cuts the surface
N

'z&.g'"(x,y} for Fok

O\ A TFra, 41,

ad

T\ﬂl\llﬁ‘erscct it in an elliptical curve, while any plane perpendicular
TO\{he x, ¢ plane will cut the surface in a curve of the normal form.
The probability that & point (z, ) drawn at random will lie in any
region R of the %, ¥ planc is obtained by integrating the function over
that region,

Pl(w, y)isin Rl = [ [ fa, y)dy do @)
B

The function might, for cxample, represent the distribution of hits
on & vertical target (Chap. 4) where 2 and y represent the horizontal
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§9.1 THE MULTIVARIATE NORMAL DISTRIRUTION

and vertical deviations from the centra) lines. And in fact the dis-
tribution closely approximates the distribution of this as well as many
other bivariate populations encountered in practiee,

We must first show that the function actually represents o disirihuy-
. tion by éhowing that its integral over the whole plane is one, ie.,

f_::, f_‘: ez, yydy de = 1 3)

The function .Wﬂl, of course, be positive if —1 « » < L. To stnyghify
the integral, we shall substitute

\\.
T — (M7 ..
[ < W/
p = ¥ T M “4 N
Ty m"\'\.

go that it becomes

) w I \
~1120—p0) Bl v4o2y g, g}
—————— ] ¢ {21472
j—m —a%'\fl—pg “'\.\‘

. . )
On completing the Square on u 1n the expehent, we have

L] o 1 »."“
—_— o g—ﬂjgj‘l'.—p:)][(u-—p\‘)z+( I—p? Y] dU d'f,t
/—-m — W 2"" v 1 - P2 "’C:;

" and on substituting

u—-""a',r du
w=———.~s£—-— dwy = %
\J'\l"* Pz A I - pZ

the integral may be written as the producet of two simple integrals,

A1 ° 1
O =2 ey (5)
SN 2 f —= V21 L'
both of whish-are one, as we have seen in studying the univariate
normal distribution, Equation (3) is thyg verified,
To olitain the moments of ¢ and y, we shall find theip joint moment
geKé"f’s,tﬁlg function, say,
7t to) = Betvrtew) (6)
= [fet=tf(z y)dy de (@)
Let us again substitue for z and y in terms of % and » to obtain
m(tll tQ) =

#1 gzt e
gt ks et [/en 11+389'3'9é_-—}——-—1______._2-e—-[l/2(]_—-p2)](u2_2nuv+¢.2) du du (8}
TN - g
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THE BIVARIATH NORMAL DISTRIBUTION §9.1

The combined exponents in the integrand may be written
1
— ?»——(1 =5 [Tje - 2,?:1_51} + 2 — 2(2 :-_92)51%% — 201 ~ pYtao,v]

and on completing the square first on » and then on #, we find this
expression becomes
1 )
T~ oY flu —pv — (1 — pDtaoa® + (1 — p2) (v — plios ~ tao,)?
— (1 = p% ({502 + Zptstsr.a, + GoliN
whicy, on substituting A

_u—pv— (1 — pHtos )
w = e £\
41 — p? « \J
2 =1 — pha, — lagy A0
bhecomes RS 4
_l/éwi’ - /2:2 -+ %(tlﬂ" + 2pi1£2'720:v R igﬁf}
and the integral in (8) may he written \\,
mi'rf-.. ('2) = e!lpr——ls,ﬂye%(i1255"““"2'9!1!27;303“"322!71;5)[ f e~ B~ (222 hap d=

— P.!\#:‘Ft"ﬂh"i‘%(512655"‘2##[“';‘U;dy-l'h‘o'yg}“ ~ {9)

since the integral is obviously onesd
The moments may be obtamefi by evaluating the dE‘I‘lV.‘:ithFS of

mity, fa) ot ity = 0, ¢ = 0. Tkus.

e '
W 4
x@ "”] =t (10)
.‘, ai]. i1 =
" 2*m
P \% N = - 2 11
x,\' » ., E{z") 632 ]zl.ag o #e o (1)
hence the Va\smce of =i
\ Blz — p)? = E@@%) — i =0, (12)

™

Szmll.mﬂy on dJHprcntlatmg with respeet to ¢, one finds the mean and

Val‘l&m‘e of y to be u, and ¢2. = We can also obtain joint moments
E(zy)

by differentiating m(ty, ;) r times with respect to ¢, and s times with

respect to ¢, then puttlng iy and is equal to zcro. The covariance of

rand yis

El(z — u)(y — wy)) = BE(@y — Tty — Yibo + pobty)} .
= E(xy) — paty
= [AFL0y ) (13)
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§9.1 _ THE MULTIVARIATE NORMAL DISTRIBUTION

as may be verified by differentiating m(ts, {2) once with respect to cach
variable, then putfing the variables equal to zero. The barameier g
i5 called the correlation between 2 and y.  When the cotrelation is zoro,
it will be observed in (1) that fz, ) becomes the product of two uni-
vatlate normal distributions; hence in this case {p=0), z and y will
he independent in the probability sense.

The marginal density of one of the variables, z, for example, is by
definition

hiw)y = [ @, pay (1)
and again substituting KON
p =Y T O
oy N
and completing the square on v, one finds : ‘

- i RO\ AR
Hi{z) = /_m%;\/l——__?e : (727 .\Q}“PEJ (= =) de

Then the substitution \ ,\
— v - P[('x__-_ #:)/ﬂ'z}f{; dip = _dir—__
V1 — 27Ny \/] — pt
shows at once that K \" :
N ] _.l(:"__'f‘_‘)! -
) 2y ———2 I\ o 13)
Al )z AN 2 g (

N

the univariate normal \Lénéity. Similarly the marginal density of y
may be found to be () :

N/ i Lfy—ppy2
9, 2 =————1¢ 3z Ty f]G

T oy

O
Hm’.ing\i%e”'hmrginal distributions, it is possible to determine the
CODdlt-lE)L]@] distributions. Thus the conditional density of z for fixed
Va.l}g\eg’;jf' Y i8
\ ‘3 j‘ 23'-' — f (-’E, y)
) = )

and after substituting for the functions on the right, the expression

may he put in the form

1 S N :
flaly) = ——— = mageag[sm w—m 17
» Voo /T =it p (17}

which isa univariate normal density with mean

1 Hz + (Wz_/oy)(y - ,uy}!
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THE BIVARIATE. NORMAL DISTRIBUTION §9.1

and with variance, ¢2(1 — p2. The conditional distribution of y
may be obtained by inter changmg % and y throughout (17) to get

fley = e R N TS

.__.8 Zeptl—
V2 a ‘\/ 1 —p?

The mean value of a variate in 2 conditional distribution is called the
regresston function when regarded as a funetion of the fived variates
in the conditional distribution. Thus the regression funetion for z in
(17) 13 pe + (poz/oy)(y — py), which ig a linear function of y in the
present case.  For bivariate distributions in general, the mean of '

: oA\
7 'S )\

/
K=ty + POy =iy} /Ty

»\ Fro, 42,

7

In the conditional dl‘-:tr‘lbu\tlt)n of # will be some function, say ¢(y), and
the nquation O )

P\ = g(y)

whon plotied, m}he x, ¥ plave gives the regression curve for 2. 1t is
simply a Cui\:ta which gives the location of the mean of z for various
values of .

For "N;lé bivariate normal distribution, the regression curve is the
Stl\l\ght line obtained by plotting

€= g+ 2y = ) (19)
Ty

us shown in Fig. 42. The conditional density of =, f(z|y), Is also
plotted in the figure for two particular values, yo and g, of y.

The cumulative bivariate normal distribution

Fla,y) = [ [1. 56, 0deds
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may be reduced to a form involving only the parameter p by the snb-
stitution (4). Thus,

* : 1 =] G SR
Fla, y) = Folu, v) = / f - \/]——,02 eI EO=gB s st 1 1y

The funetion Fo(w, v} is tabulated for p = 0, .05 .10, - - -, 435 in
Karl Pearson’s “Tables for Statisticians and Biometricians” (It 1,
Cambridge University Press, London, 1914},

9.2. Matrices and Determinants. It is apparent, from our shgdy
of the bivariate normal distribution, that an in\-'cst-igation\ o0 the
k-variate normal distribution may involve some very unwiehdy ige-
braic expressions. In order to simplify such expressions{ 1} i= v orth
while to develop briefly the algebra of matrices. PNY

A matrix is any rectangular array of quantities, i I{‘ﬁr éxampls.

AN

B 0 log x‘[
a1l a0

¢
Is a matrix with two rows and three cohglijgs. The matrix is nothing
more than the set of quantities; no, opbration on the gquantivies is
impled by writing them in such @ﬁjﬁrray. The coordinates (., y)
of a point in a plane may be regarded as a matrix 12, %l with one row
and two columns. A sample of ¥ observations (xy, ), (2, ya), - - -,
(s, y») from a bivariate poRtlation may be regarded as a matyix

/N
€ 3
L 3

\'\. - y;!l

Ty

G Ty

O ) o
\,\\w' {xﬂ Y¥a

with svows and two columns, or alternatively as a matrix

: |

ES T
yl y2 - - - yn

with two LOWS and = columns, The individual quantities which make
up the matrix are called elements of the matrix,

:Ir I L3 .
We shall be concerned with square matrices, which have the same

'number of rows as columns, A general expression for g square matrix
is
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9.2

k+ MATRICES AND DETERMINANTS
¢ g a1z vt alk}
A2y Qo oy ° * ¢ o
(1
12
e @2 s - - - Al

whoye tho elements are represented by a;;.  The subscripts ¢ and 7 give
the position of the eloment in the array.  The first subseript designates
the row, and the sccond one the column, Thus the element repre-
sented by agr lies in the fifth row and the geventh column. Tha‘top
row ig generally taken to be the first row, and the left-hand coltimn the
first column. The erder of a square matr]x ig itg number, Qf rows or
columns; the matrix in (1) is of order k. The set of cle Ents a1, das,
@3z, © * *, oz are said to form the main diagonal Qf}the matrix. A
square matrix is symmetric if a;; = o for all 7 and ive., if the array is
unchanged when the rows and eolumns are interebanged. Thus,

a 0 =z \
0% v
HET A

is a symmetric square matrix of oxder three.

An zlgebra of matrices of the same order may be set up by defining
the operations of addition, sibtraction, multiplication, and division.
The swm of two matrices js”’f:he matrix of the ordinary sums of corre-
sponding elements. Thus,

o b o kg et bR ot
d e fNKIlm n o =|d+tm e+n f—}-a[ (2
ly R lp g ol llet+p kg i+ 1]

N\
5111)1’]&(3“01’1'\}8 similarly defined. The product of two matrices is
defined ag) follcms The element in the ¢th row and jth column of the
Drt)dtlgﬁ\mzmtnx is obtained by multiplying the clements of the ith
I‘O‘N:)f: the left-hand matrix by the corresponding elements of the jth
column of the right-hand matrix and adding the results. Thus, using
a dot to indicate multiplication,
FO& b (;H '|J E o
‘d e f mon 0
e a
aj 4+ bm +ep ak+bn +cg al - bs + v
=ldji +em+fp de+en+fy dl 4 eo + fr
igi + hm + ip gk + hn 4+ ig gl + ho 4 ir
1m

(3}




§9.2 THE MULTIVARIATYE NORMAL DISTRIBUTION

It is to be observed that the product would be different were the order
of the two matrices on the left reversed; multiplication is not COT-
mutative. Division will be defined later.

We shall use the symbol [[a,| to represcnt a gencral square matrix
of order k; i.e., [lay| represents the array given in (). In this nota-
tion, the definitions of addition, subtraction, and multiplication wre

laall £ [ball = lay & by {4)
.k | AN
laal - 1Bl = || 3, ctinbms . (5)
m=1 ' Oy

The undt matrix is defined to be the matrix which hg.uiibnes for the
main diagonal elements and all other elements zero. iHus,

oo @
o 1 \J
”g 0 1 AN

is the unit matrix of order three. We sha‘ﬁ se the symbol §;; to repre-
sent the elements of the unit matrix; Hhns 5 is defined by
G = LQVT =5
ST i

It is casily verified that N\

[|5£fi[i&t)[@£fl| = liaall - 18] = flai (7)
The unit matrix plaﬁ\bﬁé same role in matrix algebra that unity does
in ordinary algebra.,

Certain matyiées have corresponding dnverse matrices. The inverse
of a matrix Jfost is & matrix, with elements which we shall denote by
a”, such t\ha})

O la¥it + lasit = jis| (8)

(6)

Thugtﬁb inverse of a matrix corresponds to the quantity 1/¢ associated
%ﬂ}ra quantity ¢ in ordinary algebra.  Division of matrices is defined
’terms of the inverse matrix of the denominator. Thus,

W}TH ol 1s defined to be J54] - oy (9)

The inverse of a matrix is often indicatod by putting the exponent —1
on the matrix. Thus if a matrix [o5]] has an inverse matrix with
elements b, that fact is usually indieated by writing

B9 = Jjog 2
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MATRICES AND DETERMINANTS §9.2

Since multiplication is not commutative in general, it follows that
il = - [l will in general be different from |[ay) - Bttt How-
ever, it can be shown that a matrix is commutative with its own
inverse:

llasdl - el = [l - llagt; = (18] (10)

Our principal problem in connection with matrices will be to find
the Inverse of a given mafrix. This is most, e&sﬂy done by means of
detei minants. il - &

may reea ] tho pr npeltles of detelmm&n’rs fthat are of prlmalxmtel est
here. A delerminant is a partlcular?umfmn of a square™array of
elements, ||ay|, namely, the polynomlal//-"' "‘.1,7‘_“_ T

Z X @iy, - S Qi .“’.,\\' (11}
whero 'the sum over iy, fa, * * *, % i8 taken ovén'all permutations of
1,2 3, - , £, and where the blgl’l is plus gt/ minus according as the
permam’rion {1',1, iy, * * *, %) I8 an even O¥ (x\id permutafion of 1, 2, 3,

+, & (le, according as the integerst i (1, %o, = » », i) must be
interchanged an even or odd numbef of times to bring them into the
order 1, 2, 3, - , k). The functmn (11} is usually represented by

the array in (1) except that singlebvertical bars instead of double bars
are einployed.  We shall uselthe letter A to represent the determinant
of the clements ay;. .iMB\

= Z + Qs © 0 7 g (12)

ik

I‘»hv zofactor of any clement a;, is the deferminant of order & — 1
fU\Slléd by omitiing the #th row and jth column of 4 multiplied by
{~ 1. We shall denote the cofactor of ¢y by Ay Thus,

i1 Gz G4 G5 0 0 Qi
a1 I3z dza dzy - 0 O
ity Q43 Gaq Qg 7 " 0 Oy
Ay = (—1)5 . :
Gr1 Qg2 Gpe CQps 0 ¢ gk
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It is shown in the clementary theory of determinants that the valye
of a determinant may be obtained by adding the products of the
elements of any row by their cofactors, i.c.,

A =anda + aadn + - - - + apds

3
= E a'-;in,' (13)

i=1
where any value of £ may be used. By means of this result, the
problem of finding the polynomial expansion (11) of 4 determifinnt is
reduced to the problem of expanding determinants Ay of onedes® order.
The determinants A;; may be further reduced to exprcssig{’n’:“iﬁv olving
determinants of order ¥ — 2, and so on. Thus, alwawd expunding
on the first row, for example, the function representdd\ by a determi-

nant of order three may be found as follows: \\
e b ¢ . )
d e f=ae '{J—‘bd ‘{—E—cd 4
4 h 2 g 1 Q’x’\\h
g h L&
= aleld] — fihl) — bH figl) + e(dlh] — ejgls
= aet — afh ~ bdi -®fg + cdh — ceg
since jxf = 2 by (11). ~“
One other property of detprminants which we shall require 1s
e
Pliidn; =0 ixm (14)
¢ LA

If the elements of a;} row are multipliod by the cofactors of the cor-

responding elemgzits of any other row, the sum of the resulting products
will vanish. ()

We can:r(ak determine the inverse of g given matrix in terms of its
elements\\ﬁuppose the determinant of llasl is not zero. We shall
show.fgl:mt the elements a¥ of the inverse of l|las|| are

¢N”Y Ny
<\§ - aia’ . % (]5)

wher(% 4 i3 the determinant of o]l and Ay is the cofactor of @z To
do this, we need only show that

lasil| - [tat] = [[a|
By definition of a product, the element ¢, say, in the product is
Cy = E AimlG™
m
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a‘\?mA fm
Ciy = —a

)
m

From (13) it follows that the sum is equal to A when ¢ = j, and from
(14) the sum is zero when ¢ = j. Ience we have at once that ¢;; = &,

If the determinant of & matrix vanishes, it is impossible to definc
. itg inverse, and division by such matrices is not possible. This situg->
tion is not entirely analogous to division by zero in ordinary algebra,
because there are many matriees with vanishing determinants,nfh\éreas
there is only one quantity zero in ordinary algebra. \ \/

Two properties of inverse matrices which we shall require Jater and
which we state without proof are: (1) The detg}@ﬁﬁant of the
inverse of a matrix is equal to the reciprocal of the deferminant of the

“original matrix.  (2) If a matrix is symmctric,’igsdinverse will also be
Symmetric. .‘{f‘

To illustrate the computation of an invel:sé}la,trix, we shall find the

inverse of O
[ERSRY

flagl| = |[25M 1

q0 1 3

Ny

The determinant of the matri\a{is

)
\‘1 0
iﬂifl.=\2 4+ 1
oo 13

¢/
W 4 1 2 1 2 4
~0 _3f1 3 *_l‘o 3’+°|’0 1
~\\"' =3(12—-1)~ (6 - 0) = 27
The cofm::'t‘r"n's of the elements are
~\J
/ 4 1
N\ An =] 3! =11
: 2 1
Alﬂ = - ‘0 3| = —6
2 4
A= ’0 1‘ =2
) 10
Ay = _[1 3’2 —3
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and 5o on; the complete matrix of cofactors is

“ 11 -6 2
Mall =13 9 -3
L I =3 10|

On dividing each element of this matrix by lagl = 27 and mterchang-
ing rows and columns, we have the inverse

{' 1367 —34q %Ti
il = |l 6z 97 _37_| Q
(]| [T 2T 7T 7o
| 260 35, 104, O\
o\

as may be verified by multiplying this matrix by the origin:! matrix
o obtain the unit matrix of order thyreo, N

9.3. The Bivariate Normal Distribution in Matfix Notation. We

™ shall denote the two variates by z, and ; instead Bf = and #, and Lleir

means by £ and £ in place of po and gy (Wo'use gy and 4. for the

means might result in some confusion \\;ixﬁh\‘fhe moments about the

mean for a single variate.} The V:u-ian,ceé\éf xy and zy will e denofed

by e1: and o, instead of % and o2 :];laéf-ead of the correlation p, we

shall use the covariance pasmy a8 the\fifth parameter and denoto it by

o132 0T 031, Both ¢4 and oo, will*.ﬁe’ used, but it is to be renvembered
that they are equal and repr@géﬁﬁ the sarac parameter.  The matrix

4 |
e = 0 o]
s 8J LT21 Tay|

(1}

(™
I will bo referred to,a.‘%he variance-covariance matrix or, more briefly,
as the cova-riancgnmatrix. It is a symmetric matrix. The determi-
nant of the meimx is
$

' "\ loul = 611000 — T30, (2)
which in’%e old notation is /
O ool = 31 — oty \ ®
“The inverse of the matrix is
- o2 _ o
lov = f ol o @
| ‘_ 9u on
Joul |Cfa':'[=.

which I8 symmetris since g1y = on.  In the old notation the elements
of the inverse are S

17¢
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- oL p l
i e ol —p5 1 — 52
?.'._ waay(l — p%) oi(l — p%)
The daterminant of the inverse is
i 1
R
1

T ) N3
Now il ig to be observed in (5} that the numbers ¢ are csgantidlly
the coclficients of the terms in the exponent in equation'(l,}). In
fact, the exponent may be written as: N
=3l o — )2+ o (mx — B — f2) 0% (@ — &0l — £)
S L SAH o3 (zz — £2)?]

and the constant multiplier in the distribution.sg.zw be written as

\_/Iﬂ or *'--\'Q
2m ’2;?5 ¥ o]
The bivaviate denstty may thus be p:l)"t:fll the form
. RN 22
1 .i}é_El ‘Elau(z‘-um (os — &) i
f(xl,lfz) = -2-%—_{:\“5 fg‘-‘f a8 i K (J)
The double sum in the éxponent s called a quadratic form in the vari-
ables #; — &, the o' 4re called the cocfficients of the quadratic form,
and/||o% . is ealled $i¢/matrix of the quadratic form.

B.4, The Muitivariate Normal Distribution. The mulfivariate
normal dist%@t’]’on may be thought of as the distribution of a popula:—
tion of objéels or events which may be characterized by several vari-
ables, sad e, 29, * + + , 2. Thus a population of human beings may
be G}yjlx}c.telized by their heights (z1), weights (z2), head lengths {z3),
a-m\léngths (x4), walst measurements (zs), and s0 on. A machine
tool may produce steel shapes which may be specified by several
measurements of lengths and angles. Each member of the population -
has a set of measurements (zy, &2, * * * , 4x); & sample of size n drawn
from such g population would consist of » auch sets of measurcments.
© Geometric language is often used to deseribe a multivariate popula-
tion. A given sef of measurements (x1, %2, © * * , #x) 1% referrcd to
a8 the set of coordinates of a point in a k-dimensional space. The
Population consists of the poinls of the space. The digtribution could
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§9.4 THE MULTIVARIATE NORMAL DISTRIBUTION

be plotted in a (5 + 1)-dimensional space, and would plot as 4 so-called
hypersurface consisting of the points [xy, 23, + - | Ty, oy we, - v
z)l. The statements are the immediate generalizations of the case
of one- and two-variate populations. A distribution of 4 single variate
z, say f(zx), may be plotted in & two-dimensional space and consists
of the points [z, f(x)] which lie on the curve y = Fle). A distribution
of two variates x and ¥ may be plotted as a surface in a threo-dimen-
sional space; the points of the surface z = flz, ) have cooriinates
[z, y, f(z, »)l. ' N
The multivariate normal density is

Eok ) ‘:\
1\*? . —-}ﬁ.z’: 2 rr""(w;&—"g}j(x,—&}
f@h Lay.r v ,ka — (Q?r) - /[o.e; g imli=1 (..}" (1)
in which the matrix ||s%] of the quadratic form issymmetric and has a
positive determinant. This is the dircet gengralization of the Jistri-
bution given at the end of the preceding section. We shall sei later
that the inverse of the matrix o] of thelgitadratic form is the matrix
of variances and eovariances, and thab e means of the rpoare &
In order to show that )

.:.’:’" k
.[—‘ﬁ e f_w‘f(fvifzﬁ‘?: Tty xk) H dxi' =1
N\ i1
we shall integrate out oneldf the variables, say x;, by comgleting the
square on that variable™y First we shall change the variables to
\ h\ Vi=w— k& (2)
to shorten the .{’a’ﬁSuing expressions. The quadratic form becomes

N

3 Tty ngpleting the square on 91, we find

Ek 'S E 2 k&
E E\ 9= 4 Y oy + Y oty + Y Y oy
:=1:7r1j; i=2 =3 i=2 =2

k
Z o'y 1 ¥
2

s.'} "
!
q!-l
2
Ll
+
IS
S
q:r —
e
ql—-
L
S
+

P P

J‘?S“

i
qI--l
o~ /'@""‘\
+
q:'H
e
QH =
& =
\“-—-ﬁ \,.:_/
f 4
9
- g
o~
qb-t
<
q:}"'
e
+
I~
I~
qaa
o
=

i 2 i 2 2
11 1 . 2 5 & i 1F
= (v D o) LD ) PORC
2 2
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and on substituting

o 1 k
M=ot =) o%u (4)
2
113
T HI=23, 0k ()

we have

oy = ol + Yy 2\

HMB"
HMa—
v o
e[ e

Wiils this reduction we can integrate out yi.. The integralﬁaﬁ@' is
kB
" SRR L —% 2 Ty
j_ s yo, oy geddin = f (277) Vieie 1'\1\“ dy,  (6)

L

ANV k ok

1 (k-—]’.)!‘Z‘, ']“‘ — 6 2% Zatipuyi
= ! __. N R T P 22
(21:') ™ \/_ o7} &

/ Ve e ()

\
in which the integral is ‘abe, as follows from the univariatc normal dis-
tribution. Now let ds examine the resulting function of g., - - -,
Y, say, &
L) Bk

o 1\60% o fJoi] THET |
SR W (21r) vae ®

wharet "’\and 7 are indices which run from 2 to &. Suppose we denote
AN
thé\{mmr%e of |lo%]) by llowi; then

E o-"”‘o'm,- = 5;,' (9)
m=1

and since Jo*|| is gymmetric 8o is 0w, and we may interchange 7 and
min ¢ or § and m in om; without invalidating the relation (9).

We shall show that the inverse of o], ¢/, ' = 2,8, - - - , k, 18
precisely [ov;dl, 7/, 5 = 2,3, - - * , k, L.e., on omitting the first row and
column of the inverse of o], we have the inverse of [#*/]. We need

9
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only show that
£
2 G'mj’ﬂ_""m = 6;”:" 1:!; j’ = 2; 3; T, k (10)
m=2

Referring to (5),

k £ .
. - . o.lta.lm
TG ™ = Z Tmje { @™ — g1
w2 m=2
k . &
o ol L N\
-5 S e S
m=2 m=2 2\

and in view of (9), the first sum on the right of (11} ,’iéx'.g,-a,-» — g,
while the second sum is 8,y — ¢!t = —oyo’? sineé P has the range
2,3, - -+, ksothat 6, = 0, The expression (lr\liiis therefore

By = oape ¥ — T (g NS gy
. . 9, \d
so that (10) is verified, R
The coefficient /0% /+/¢'1 is Vel \as may be seen as follows: ¢!
is the eofactor of ¢4y in |oy] (3, § = 15,27 - -, &) divided by |0, The
cofactor is oy (¢, 7 = 2, 3, - W8N, Since o] = 1/ey], we have

"‘

VEISY 1 1
VS Velal T Vel

: : ¢\ 3 it . . :
and since floss| is tlKc\lnverse of [#*7|], their determinants are recipro-
cals and honce %\

O N R -

We ﬁ{id\'then that (8) is

RA\Y 1 \¢—nr
S s = () VT e g
’"\ o

OW suppose ¥ is infegrated out of (13). The preceding argument
shows that the result will be, say,

E ok
G-tz =1 X X
) |57 e i=8i=3 {14)

1

R(ys, ey = -, yl) = (%

where [5%]| is the inverse of the matrix obtained by striking out the

first row and column of lge| or by striking out the first two rows and.
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eolumns of [logfl. Proceeding in this manner suppose all variables
but ¥ have been integrated out; the result will be, say,

PR) = = Ve et (15)
and we know what ¢¢ is in terms of the original parameters o, ¢, is
the inverse of the matrix obtained by striking out the first £ — 1 rows
and columns of ||oyj, but this leaves only one element oy, in the matrix,
and its inverse is simply 1/ov:. Thus oo = 1/63x. The integral ‘Qf*
{15) from — = to -~ cc i, of eourse, one, and we have shown that, (1)
does represent a density funetion. A

9.6. Marginal and Conditional Distributions, The argument in the
preceding section has supplied us, incidentally, with allj:fié‘ marginal
distributions associated with the multivariste norg@i ‘distribution,
The murginal density for the first r variates, 1, 72, S\ | @, Is obtained
by integrating out the remaining & — r variatcs,.gnd the result may be
put in the form A

T T s' "\ v
1572 —18 X T a0 o) (e — o)

() virmte g 0)
where the indices ¢ and b take on‘t}i‘e'valucs 1,2, - -+ ,r. Thecoefii-
cients 5% of the quadratic form are obtained by striking out the last
k — r rows and columns of [l and inverting the result; ie.,

L )

ol < Pl @b =12y ®
If one wishes to obiéiﬁ"the marginal distribution of any other subset of
r variates, he may/merely relabel those variates 2z, 25, * =+, 2, and

use the aboyefdrm; or he may definc indices o', & which take on the
desired \-'@Lm\\-s." Thus if one wanted the marginal density of x4, x4, s,
he couldgaut it in the form

\N"

g\

\ 71N% —34 2 ZFY (dar — Ear) (mor — £8)
—_ T vonE LA
(2vr) G E @,V =1,4,5

whore

e11 o ot

S
!

751 U542 Oaj

Now let us turn to the conditional distributions. The conditional

density for the first variates, for example, is defined by
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- f(xl! Xoy » - - ,.T-\i
Floy, ey v o fo!xﬁf-lj.' Cr, T = o, g B

where g{Ze4, * ¢ ¢, %) is the marginal density of the Inst /i - ¢
variates and is

1 \k—ry2 = 1% 2 XE(mn — £} (im0 — i)
§Erps, © 0, 1) = (‘Q}) Vigrde e (4)

wherep, g =r+ 1,742 -+ -,k and PN
374 = lloplt O\ (6)
O
On dividing (4.1) by (4), (3) becomeos: g W
1V /[0 *;é(&"*'wf—235"'*“{5&)
- —_— i ny '"". (6)
2r -\/Ig'prx| v
in which wo have let 3 = 2 — & We 31‘1@1 let g, 7 =1,2 - k
o, b=1,2"--" riand p, g =» 0T+ 2, - - -,k throughout

the remainder of this section. The conditional density (6) i= 0 density
for the y,; the y, are constants. ~We shall show that {6) is a multi-
variate normal density for the¥, and that the regression functions
{means of the y.) are linear €@nctions of the Y-

The quadratic form, E&"?'y,-yj, may be put in the form

ch"\*‘yyb + 2 Yoty + Yy, (7
P op Pe

where the firsh 80 involves the squares and produects of ihe variates
Yo, the secoresum involves ouly the first powers of the variates, and
the third (dpés not involve the variates at all. First we eliminate the
linear,'t'tht 8 by substituting

‘..\’:. za —_— ya -—l- ca LS)

a \
)
\&nd properly choosing values of the ¢a. The substitution changes (7)
to

;rf"’(za — )z — ) + 2§a‘“’(2¢ = o + 3 0Py,

»q
= 2 TPty — 2 E a2.0 + E 7%, + 2 Zaai’zay,, — 2% ooy
o ab _ ab ap 2
_[_ 2 gﬂq:yﬂyq ((D

v
182
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The second and fourth sums on the right of (9) will cancel if we put

Z o, = E "y, {10)
b »
This is a set of r linear equations (fora = 1, 2, - - -, 7) which will

deterinine the ¢’s.  We may solve them for the ¢'s easily by employing
the inverse of ||o=*f, which we may denote by |5,/ On multiplying
(10} by 7., and gsumming on g, we find.

z Faat® MYy = E{ﬁm*o‘“b(:a N\
op a N
= Z SunCs <«
. b :‘"\;
= g . :uf’s (11)
Tf we define D
"
= E Feopo?? X)) (12)
- 5

then the ¢’'s are the following lincar funetiong QMe Yo'
"~ N
e = Zaapy_fg .‘,f (13)

;,o

With the substitution of {8) and (1“13 in (6) the part of the exponent
in parentheses becomes then “::m

Z otz S+ E e,y — 22 a’“;Cayp -+ E PNty — Z Ty, (14)
ab ab D pg Py

We shall show that th in%f four sums cancel out. If we substitute
for the ¢’s in (14) from {(13), the coefficient of ¥4/ in the last four sums
of (14) is, say, &

dﬁ\'—:‘z P0gpong — 2 E 0Pty + 07T — §° (15)

In the ﬁrbl\\\um @ and b are interchanged and E Frao®? substituted for
fxb;ml{!"}iccordamc with (12). The first sum on the right of (15)

betquies

E Uabo_'ba’ﬂ'“,paaq = E 6:!0&’?0'00
aba’ aa’ '
= E 0" Pny (16)
] @
and thus cancels half the second term of (15), leaving
= — Eaapaaq + gPT — FPe (17)
-
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This expression is now multiplied by app and summed on p aftor first
substituting for as, from (12); we find

E Coplpg = — 2 Cpp T PEqpatt + E TppaPe — Z e (1%8)
» P

b abp

) . o
- E (6?;' - L a'a'p'o'aa) &abﬂbq + 2 FupoPe — OE’ (19)
al a’ B

— P _
= 2 Cap T Faa"? + E Gppe™? — 4%
v

aa’h
= E CorpBate 4 E Tpo™? — b% Q)
a'b » A ¢
A
= ) Gt - Y gogPt — 58, A\
[35 e n ¢ N\
b P «
: ig g N
= 2, Gipd' T — 0% AN ¢
i ¢
NN
=38y — 8% = (20

The & of (19) vanishes beeause a and p" havedifferent ranges.  Iiqua-
tion (20} is now multiplicd by &7 and sug:&fried on p’ to show thal the
t,; vanish, \Y;

We have shown, therefore, that the fadratic form of (6) is simply

o N

the first sum of (14): RN
Yoz = 2oy + e) (s + o) (@1)
ah ab

74\

and hence that the cocfﬁgi’g}tts of the quadratic form in the conditional
density of the y, are thg\ééime as in the original density. Furtiier, the
regression functiong® 7 Ce, are linear functions of the fixed variales Yo

9.8, The Momelﬁ.t“Cenerating Function. The joint moment gener-
ating functiol;u{or‘xl, Ty, - - -, s

."\\~
m(tl, tz: -%-w; ZL) = E(eEt,'x,-) (I)
‘.'.: % 1 k2 k
,,\f .. / o3tz (_) V0]oll| e B2 @it iyt 11 4z.. (2)
NS S = D
\ 3
Let'z — £ = g To perform the integration, we again need to com-

plete the squares on the y's. We shall merely exhibit the result and
show that it is correct, Consider the expression

Z_ ; ati (yg — E am.rtm) (yj — E aﬂj;,‘) = E E oy
1] e n 1 J
- E Z 2 YTty ~ 2 E Z Y 1O it - Z E E E 096 i itutn (3]
f iom ;i

o T imon
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THE MOMENT GENLERATING FUNCTION £0.6
In the second term we shall sum first on j and use the relation
2 G";"O'"_,' = §in
) i
to obtain

E E 2 Gifﬂ'm'y{tﬂ = E E 5£ny"t,‘
i moF i m

= ; yit;
. . N ‘n\
since the sum on n of 8ui, = ¢ because &, = 0 except when » =
Similarly, the third term in (3) reduces to Zy# = Syt Inthe f(iu,r}li
g

term of (3) we sum first on 7 to obtain O
Z E E FmiTnitmtn ': R
i m n \:“\\\. .
and then sum on j to obtain \4
2 Z Crmtmln ::\\3
" R ’ - { &
We have finally 8

22,0y — 3, mitm) (1 — E Ol ) = 2 E Sy — 2 E tiys
+ E Z Fiilily
r

30.

&

and (2) may be put in the forfnn
&)

p. 4
2! M Munt;b

m(tl, P fL) p‘ \ i 7
,1 k/2 __ =142 Doti{y - Zuuth(w Fanita)
I vf SINVCE " e

The integral lbe is clearly one, sinee it is the integral of a multivariate
normal de»nuﬂty with parameters § = Zonitn = Zond,. Hence the
mom@l\) generatlng function is . _
, fl) = pZtitit i EIautits : (4)

4

m(tl, -

On differentiating m with respect to ¢ and then putting all & = 0, wo
find
E (xr) = Er

and the second derivatives show that

E(@?) = on + &

E(xrxs) = Ors + Erss
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89.7 THE MULTIVARIATE NORMAL DISTRIBUTION

remembering that ¢, = 0. The variances and covariances of the o
are therefore ¢y and o) hence the inverse of the mairix [ of the
quadratic form of the multivariate normal distribution is in faet the
matrix of variances and covariances of the distribution,

As in the case of the bivariate distribution we may define correlutions
pi between 2; and z; by the relations

pi = —= i
-

and these correlations may be used as parameters instead of taty covari-
ances, It can be shown that if le%] is posilive, as is 1:(36@1‘1-0(! by the
definition of the distribution, all the correlations mugtNkS Detween —1
and +1. If all the corrclations {or covariances) fipe zovo, then the
multivariate distribution reduces to the product@fk univariate normal
distributions with variances 1,0%. ¥

9.7. Estimators, If random samples of gize n, (x lay E2ey 0t el
a=1,2 -+ =n aredrawn from a k-ydvifite normal population. the
joint density of the observations is AV

N

( i aks2 ‘:}3‘*22 Eﬂ‘f(xffx“fl')(f.‘ﬂ’_EJ')
5 |

0.«;;';11/2“({;"4 t i oa {1)
and the logarithm of the{fkeﬁhood is

nk % A P N y
L=- o log 27 +\2 log [oi| — 2 2, E oV (e — E)(e — &) (2)
| \ \x "o i J a
To estimate the’parameters & and o', we solve the equations obtained
by putti g'the derivatives of L with respeet to these parameters equal
to zeroys\Considering first the means,

*

\3%\: ol 2 (T1e — &) + -éjzz Z T2 — &) + _;Q Zail{xm — &)

k
= ‘Zl Z 0 (T — &) (3)

Lo

gince g1t = g1,
And in general for ¢, we have
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ESTIMATORS £9.7

If we substitute Z; = (1/n) E Tie in the last expression and equate it
to zero, we have a set of & equations:
&
Y e E - =0 r=1,2"--:,k (5)
i=1 ’

to be solved for the & On dividing by n, then mulliplying by ..,
and summing on 7, we have

N\
Zz‘;ﬂ'rsﬂ'{f(fi - E!-) =0 ’\”\
o\
ar « N\
E 6is(T — &) = 0 ‘.'*'w‘.
or . .“\.\\'
Bo—bm0  s=1,2 - 3N
w\/

A
The estimators §; of the population means g\are therefore the sample

means, ™ w
£ %2 (©)

3
N

To eslimate the ¢¥ we must di'ffcrentzate L with respect to each of
these -parameters. We ha 5 = o’; however it will be simpler to
regard o as different frof 9.  We seek the maximum of L subject to
the restrictions on the\v\arlables g = g% but we shall ind first the
maximum of L ‘nlthollt ohserving these restrictions. Certainly the
unrestricted maumzhum will be at least as large as the restricted maxi-
mum. Wo h&v >

aF. \"'
G —; ‘[\|cofact01 of 078 — ~Z (Fra = £ (Bon — &)

.»\::\, .
O =Y =9 m ) ne=12 ok @

On putting this expression equal to zero for all pairs (r, s), we have a
set of 4% equations to solve for the oy The solutions will obviously

involve £;, and wo have already golved for thosc in equation (6). Let
us now define '

= }1-% Z (Tia — Ei)(Xja — Fi) (é) _
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Then (7), after substituting Z; for £, becomes

n n

§Ura - ﬁan

On equating this to zero we have
Fre = g ?‘,S,=1,2,“‘,k (9)
and if we let ||a% be the inverse of [ei7]], we have ~
9 = gl X {10)
: o\

We have located the unrestricted maximum, but it tuetls 6ttt to be
equivalent o the restricted maximum because il is obyitiis {rom (8}
that a; = ex; hence 69 = 4%, Thus the same maxifiith would have
been located had we used the restrictions o — ol otiginally ; the only
point of omitting the restrictions is that it simpiifies the differentiation

of the determinant in (2), O
The maximum likelihood estimators of the means, variances, and
covariances are therefore O
gi = "]:,z’jﬁi.a
e
I N .
b5 = 5 Dftea — B)asa — &) (11)

and the estimators of tl}gﬁarame’ucrs o are given by the inversc of |5l
N e = eyl (12)
9.8. Problems - ()
1, Show thaflthe contour lines for the bivariate normal density
[i.e., curves fexwhich f(z, y) = constant] are ellipses.
2. Sho($Hat any plane perpendicular to the , y planc intersects
the nox:;n’§‘ surface in a curve of the normal form,
3. Ih the exponent of the exponential in a bivariate normal density
istl64z + 1)2 — 2z + D — 2) + (g ~ 2)%], what are the means,
plances, and covariance of the variates?
4. What is the moment generating function for the distribution
specified in Prob. 37
5. What is the moment gencrating function for moments about
the means for the bivariate normal distribution?

3 10

6. Find the inverse of the matrix 0
0

ol o e i o

0
2
0

=i U]
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7. Find the variances and eovariances of normal variates which have
the quadratic form 2% 4+ 2§ + 4} — 2.2 — 2252, in their distribution.
8. What Is the marginal density of 2, and z; in Proh. 77
9. What is the conditional density of 2, and z; in Prob, 72
10. If the matrix of Prob. 6 is the matrix % of & normal distribu-
tion of 1, Ty, 3, ¥4, Show that the econditional distribution of 2, and s
is the samec as the marginal distribution of ; and w,, henee that the
pair (a1, z2) 1s distributed independently of the pair (zs, x4).

11, Show that the determinant with %k rows and c¢olumns, ~
a b b - b O\
boa b -~ b O
S ...'\*"
bbb - oa \4

p §

w\J
which has &’s in the main diagonal and b’s'\év}rywhere else, has the
value )

(@ — By*a +’(k:" .l)bl

Before expanding the determinang,! éuﬁtrzmct- the second row from the
first, the third from the second, @i so on; then add the first column to
“the gecond, the second to the(third, and so on.

12, Given the sample (25, 7.0), (4.0, 9.0), (0.4, 1.7}, (L.2, 2.0),
(0.3, 0.0, (1.5, 3.7) from a normal bivariate population, find the maxi-
mum-likelihood cstimhbe of the regression funcijon for the conditional *
distribution of :qg.\“P'iot the sample observations and the regression
function, N

13. Cons@@:zany multivariate density f(z1, ©5 « - -, #x). Onecan
define &\ _ :
RS " The means: & = E(z:)
\\ The variances: au = El(@: — £)7]
The covariances: a; = Bl(z — &){(z; — £)]
T

The correlations: py = =
e

What is the mean and variance of any linear function y = Zasz: of the
a's?
14. Referring to Prob. 13, what is the correlation between two lincar
functions y = Saw; and 2 = Zba (y # k2)?
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§9.8 THE MULTIVARIATE NORMAL DISTRIBUTION

16. What is the covarlance matrix for the multinomsial distribution -
[equation (3.5.2)]? _
16. Referring to Prob. 13, the conditional density of the first » 2 35

f(:""h_xE: e !/LL)
Glery, + - - s )

f(x'l: Zg, "ot ,xr[xr—}—l; o, .’t?lr;)_ =

where g represents the marginal density of the remaini  variates,
The conditional distribution has means varianees and  covarianees
which may be functions of the Trty, 0, 2y and may be (h-nufg] by
§Tryr, ¢ ¢, &) (the regression funections) and @i, © NN, 1)
where now 4,7 = 1,2, - - . » 7. Show that the expeciced A& of the
regression function &(x,,,, - + - » 1) is the mean of z; und®yrlic uneon-
ditional distribution. A\

17. Bhow that the gy(ze,, - - - » ) of Prob. ] Gard constants for
the multivariate normal distribution. AN

18. Verify the details of the sequence-of equalons (5.18 to 3.20).

19. The expected values of the ;{1 A ) delined tn Prob. 16
are called variances and covariances aboy{\’ﬁw regression. fuwnelivns and
are usually denoted by PN,

Gdffryly -k = E{}Iﬁ@ﬁh T, )]

- The partial correlation coeﬁc{mié" of the conditional distribution are
defined by N\

Tijelr31) - - &

P (e "=
~
Find py5 in termsof p1, pq, ps, and pafor the multinomial distribution,
taking the huwberof classes to be four.
20. What '“ic:ril,g_for the bivariate normal distribution?
21, Find-{keé conditional density of z, and Zy, given x;, for the tri-
variate DQ:maI distribution, and show that the regression functions are

linear, ‘ (Simplify the algebra by using variates Yo =& — & The
meanstof y, and y, are (o15/033)ys and (eg/cs3)ys.

32. Tind the variances and covariances about the regression func-
tions for the conditional distribution of I'rob, 21, _

23. Bhow, for the trivariate normal distribution, that

RETCES VI e TN (S

Prog = — P12 = Pispog

VU =)0 = g

24 Letwy, z, « -+ - » Tk denote scores on 2% questions in an aptitudt_a
test. Let the scores be normally distributed, each with the same meat
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and variance (u and ¢%), and such that the correlation between any
% E

'pﬂ;i[‘ of qUCStiODS iS o> 0. If = Z Xog_1 &Ild Yo = Exm are total
1 1

scores on the odd and even questions, {ind the eorrelation between ¥,
and y» and show that 1t can be made as near unity as one pleases by
making the test sufficiently long.

28, lict %12s.... reprezent the deviation of z; from its regression
function in the conditional distribution of z,, given xs, @s, - * - , 2.
Show for a trivariate normal distribution that @, £2.1, sz are inde-
pendently normally distributed. O

26. Generalize the result of Prob. 25 to & variates. o

27. Let 2y, 22, + + +, 2z have the multivariate normal dlstubu{,mn
and consider the conditional distribution of 1, given the othef B—1
variates. Let the regression function be denoted by z; tl:!c “Gbrrelation
between z, and 2 is called the multiple correlation gog&m@nt of &7 on &
and is denoted by Riss...r. Show for a trivarigté.normal distribu-
fion that p \\J

di1.28 = 0’11(1 - JE41 23)\

28. Referring to Prob. 27, show that M

011.28.- .k — 0’11(1 —“Rl 23, i:)

29. Show that N\
1 - R%.g3 A (1:‘_ p%Q)(l - P%ﬁ-ﬂ)
30. Bhow that \'\
1 _Jﬁjipa e (1 e PJ_QXN Pls 9)(1 p%:}-QS) v (1 - p%k-23~-(k—l))
o
x:\"'

&

is1



CHAPTER 10
SAMPLING DISTRIBUTIONS

10.1. Distributions of Functions of Random Variables. In arder to
study further the problem of estimation, it ig neeessary Lo haye the
distributions of the estimators, In this section we whall cosidor
methods of obtaining such distributions, and then in the. kéhmining
sections of the chapter the methods will be employed to obtgin cortain
distributions of particular interest. A\

A variate x may be transformed by some funct-iqnjdf X say w(z), to
define a new variate . We may think of the pop&f}ulion over which 2
varies to be changed to a new population of¢rMvhich u varies. A
sample value 2, for example, drawn fromx.‘Q\e‘ z population muy be
interpreted as determining an observatiog’%‘*—— u(xo) from the » popu-
lation. The density of u, say g{u), wil\bk determined by the irans-
formation u(x) together with the densiby f(x) of .

If z is a discrete variate, the distrsblition of a function u(x) 1s deter-
mined directly by the laws of probability. If z takes on the values
0,1,2, -+ 7 for example, with probabilities 7(0), (1), - « - , f@),
then the possible values of & say o, Uyt - v g, are determined by
substituting the successive values of 2 in u(z}, which we shall agsume
to be a single-valued foetion of 2, It may be that several valiues of =
give rise to the samCyvalue of . The probability that « takes on a
given value, saYN, s

N gu) = X'f(x) (1)

N\
where t]}'g%\l“ra, %', is taken over all values of @ such that u(x) = u.
Thus SUppose x takes on the valueg 0,1, 2, 3, 4, 5 with probabilities
Py D8 Pu Ps, Da, Ds; the density of 4 = (@ — 2) g
)

N\

g(l) = Pe

#(1) = p; + p,

g{4) = Po -+ Ps

g(9) = Ps

and 0, 1, 4, 9 are all the possible values of 4, Similarly if « is afune-

tion of several discrete variates T, T2, * * -z, with o joint density
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DISTRIBUTIONS QF FUNCTIONS OF RANDOM VARIABLES £10.1

flzy ws, © + -, x4}, the probability that u(xy, z,, + - - , &) takes on g
particular one of its values w; is .

g(uv) = E!f(xlr L T .?3;;) (2)
where Z7 is taken over all sets of values of the 2’s such that u(ay, z.,

Yy .'}_',Q) = U4
The basic and often the simplest method for finding distributions of
funetions of continuous random variables was given in Prob. 98 <f
Chap. 4. If x has density f{z) and u(z) is a function of z, then the

N\

UfX} . < A o

1 - EAY

. _ : N\

:."._-' % N/
// B N
. K8 ]M
A X; Fa¥ Pard fa¥' A
/ X, X I\ Xy x

N/

Fia. 43. o\
cumulative distribution of u is rea;}.di’ig.f’found‘ Let G{u) denote the

%

eumulative distribution; ther X%

¢S PuE <d ®)
= [ i @)
A ufz)<u

in which the integral Zi; taken over that part of the x axis where the
function w(x) is 48s¥ than u. If, for example,
."\‘. .

\\\ ulz) = 28 — 2 (5
t-hen ’:':; ) :
\"\;\ Gu) = f_‘i“_ﬁ fleydz = F(~v/u +2) (6)

Of course the density function may be obtained by differentiating the
cumulative distribution.

It will be instructive to consider another approach to this problem
of finding the distributions of functions of continuous variates.

We shall first investigate functions of a single random variate .
To see how f (z) and u(z) determine g(w), we may consider the situation
llustrated in Fig. 43, where a particular function u(z) is plotted. We
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§10.1 SAMPLING DISTRIBUTIONS

wish to determine g(w) at the point marked w on the « axis belween the
horizontal dotted Iines. If we solve the equalion 4 = u(x) for x, wWe
may obtain one or more values of x ; thus in the figure there sre three
values, z1, 23, 25, which correspond to the given value of . A smal]
interval Aw about u determines corresponding intervals Ax, Ay, and
Azs about the points 2; which correspond to x.  The funciion g(u)
must be sueh g function that

P(u lics in Au) = L L o(u)du (7)
QY
where the symbolism on the right means that the integral WMo be
taken over the interval Av. We have alrcady scen (Sce. ¢h2) that a
value v’ may be found in the interval such that O

N !

Jou gt = g0 o ®)
Now % will lie in the interval Ay provided 2 licg4mviny one of the inter

vals Az, Azs, Azs; hence we may statoe N
Pluin Au) = P(z in Az,) + P(m}} Kro) + Ple in Avg) (9)

and since

Pz in Az) = fﬂz}{i:)d:c = flai)Ax; (10
for a properly chosen valuo A A:r;, we have
00)Au = JaAns + J(@)Axs + f(a})Ars (1L)

From this relation it fs@leﬁr that g(u) may be determined by dividing
through by Ay and taﬁ}ing the limit as Au — 0,

The curve u =z may also be represented over Az, by the equa-
tion x = » L(u’):b}\)t-ained by solving u = u(z) for z. Similarly over
Ax» the Curye, nay be represented by x.(u), and over Ars by rafu).
From (1 %’wé have

" A 1’&26

dnd when Au— 0 in such 4 way as to collapse on w, all the Az also
approach zero so that they collapse on the corresponding a;, The
values %’ and z necessarily approach » and 2, since the primed values
must lie within the corresponding intervals. The ratios Avy/Au, of
course, approach the derivatives of the z; when Au approaches zero.
It follows then that

Sl o) = I [ 821 4 o a5 ]y

N su—g

00 = 1) G2+ ) 52 sy 9
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except thal one revision is required. Some of the derivatives may be
negative; thus at £ in the figure » decreases with increasing z hence
das/du is negative. We are, however, interested in the positive areas
in (%), and for this rcason we must change the signs of any negative
derivatives,  We shall use a subseript + to indicate that a guantity
is to have its sign changed if it is negative. We shall write, therefore,

o) = fle) Gt -+ o) B

+ fz9) % (13)

and since we shall want g(u) to be a function of u instead of the xi, &e
shall substitute the functions ;(u) for the z; in this relation. A\

¢\
v A\
N
& N/
4 “~
™
Tat & 4
L W
~\
N\
v/
3 »
.0\\./
PAL ¢
\Vv
A\
. » 4
TR
ONR Y
TR Y v
."'
N
o)
" :v
a3
i 2 A
.

¢ ’1\ / Fia. 44

To illustrz;taex}}he above ideas, we may consider the variate z with
density '\\"' :
R\ o) =2%@E+1) —l<z<2 (14)

&nd{%"a}néform z t0 u by the relation v = z% The function  is plotted
in\EiéA 44. The range of w is clearly 0 < u < 4. If w <1, there are
two values of z which correspond to cach value of u; we may designate
them Iy

271(?4)='—'\/;"' z <0

ea(u) = z>0 (15)

For o ~ 1, there is oniy one corresponding value of , namely,

z(u) = Vu
1
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§10.1 SAMPLING DISTRIBUTIONS

We must therefore define the distribution of % in two parts. 1§
0 < u < 1, we have by (13):

o) = S lma() + 1152 dx‘ 2 o) + 1152

- 2 —
2
9 v/u ."\(16)
while if 1 < u < 4, L\
o) = Slen) + 1) g2 w O
2 2 (Vi + O am

2\/_

The genecral procedure is now clear. To findy the distribution of any
function %(z) of a random variable z, we fi tL\for every u, all the points
a; such that «{x;) = w, and express the a:;:ab funciions of u, say a:(u).
The density of « is .

N dx;
w) = Wil(u)) o= 18
o Zf( @) 7 (18)
where f(z) is the density ¢f a: Often we shall deal with monotone
functions w{z), functlons\a hich are single-valued and such thatl z{u)
is also single- valued\\fn this case the sum in (18) would consist of
only one term, and ‘we have

\ T = ) (19)

for monothe Tunctions “ufx),

When} is a funcfion of several random v ariables, the distribution
of u\may be obtained as a marginal distribution. Suppose x1, Tz
<\3 » ¥ have a density f(21, a5, - - - | 23) and the density of w(xy, T2

*, &) 18 required. We may climinate one of the 2’s, say i, In
terms of « by solving the equsation

Uy, Ty, © 0, 1) = w
for z1 to obtain a function @1{u, %4, x5, - -+, 2), or several such fune-
tions @s(u, 2, + - -, ) if  is not a monotone function of x,. Using

a similar argument to that used to obtain (18), we may obtain 2
density
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83:1,;

A, (20)

gy T, 7 7, W) = Zf(ﬂ:u(u, Tag vt Tk), By vt Xw)
: .

and the density of  may then be found by integrating out zo, 24, « - - |
2 in y.  We shall illustrate this method in the next section where
we shall find the distribution of

n
1
i, zq, - --,a:,,):—E n=1I

for samples from & normal population. N
The procedurc described above may be generalized to detenmine
the joint distribution of several funetions w:(z1, * « -, 2%), ualzd ™ - |
2, © oty wley v o 0, ) < k) of k random variables, (We may
put . N
‘1»!‘:1(271, P ?xk) = 1 . .N"\iu

‘l{.g(xl, U ,2}';‘;)

I
=
13

(21)

w (s, * ¢, Tr) =w§
and solve the resulting sot of cquations for,, x5, + - - , 2, to oblain
a set of = functions x;{u:, %, * * * | UnNep1, © * * , &), oF if the solu-
tion iz not unique, we may have sex:e;‘gai"such sets of r functions. The
joint density of the w's and the g‘eﬁréiaining '3 can be shown fo he
s s €S = ) S me w2 (22
H 3 2y y ey Lrg 1y 'i'",\, ) * ] ,auﬂ+
where the sum is t-a.kei\}l{;er all scts of solutions of (21} and where
|B2¢/ Buy| o s the positiy® value of the determinant of the partial deriva-
tives of wi{wy, - - NGy, Tepr, * ¢ ¢, &) with respect to the w(4, § = I,
2, - -+, 7). W omit the proof of (22); it is essentially the same
as the deriv uc}ﬂ of the formulas for transforming variableg in mulliple
integrals, &lwzh may be found in any textbook on advanced caleulus.

Use off Moment Generating Functions. There is a second method of
dete'r\r,fnir'ling distributions of functions of random variables which we
shal find to be particularly useful. If w(xy, xs, - - -, 24) I8 2 function
of randor variables ; which are distributed by f(1, 2s, * - -, at3), We
inay find the moment generating function of

m(E) = E(e} ' '
= [ -« [emtmensOf(ey ge, 0, xy)Ilday {23)
If the resulting function of ¢ can be recognized as the moment generat-
ing function of some known distribution, then it will follow that w has
that distribution by virtue of the theorem given at the end of Chap. 5.
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§10.2 SAMPLING DISTRIBUTIONS

This method is quite powerful in connection with cerlain tech-/
niques of advanced mathematics (the thcory of Laplace transfor
and Fourier transforms) which enable one to determine the distedby-
tion associated with any given moment gencrating funection. #The
method can also be generalized to determine the joint distribution of
several functions of random variables.

10.2. Distribution of the Sample Mean for Normal Populations.
If samples (1, 22, * * * , %) of size n are drawn from a normal popula-
tion, the jeint density function for the observations is QO

. 2N
fay @ -0 3 =[] 1 e e
. Viro A d
1N O Y
and if the variates are transformed Lo x~\\3
' Nt
RN
W= R U‘
the density becomes : &N
v'.:‘.:' 1 n/2 )
- ) = () e @
A iy

74\

in accordance with equadion (1.22) with » = § — n, since |day/0w,] is a
diagonal determinant\with elements ¢ in the main diagonal posilions
and zeros elsewhete! The value of the determinant is readily zeen to
be ah, AN } J

To find I‘J\Iéﬁii’stribution of ¢, we eliminate y; from (2) by the substi-

tution N\
R

N .
¢u\.’:' Y1 = nf — Z = yl(ﬂ: Y2, = 7 7, y:'») (3)
2

NN ";
“aatl obtain the density
T ki)
_ 1y —14ltng— Dyt + Dt
9T, ¥z, ys, © 0 ya) = (%)2 ne z 2 )
in ac{?ordax}ce with (1,14) since 0%1/09 = n. We now wish to find the
margmal_ distribution of §. The density in (4) may be regarded as &
muitivariate normal distribution of g, y,, + + - , Y, and examination
of the exponent shows that
108
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w2 —m -n —n —n
— % 2 1 1 1
i—n 1 2 1 1
[ T S (5)
—_1 ]_ ]_ 1 PR 2

The determinant o, must necessarily be n?, since in (4) it is seen that {
+/e%| = n.  We have seen in Sec. 9.5 that the marginal distributien.
of one ol a set of normally distributed variates is a normal distribution
with the same variance that the variate has in the joint distribuﬁion

Wo need therefore to find o111, which is obtained by dividing ; the Cofactor

of 61 by l¢¥], The clements of the cofactor are obtmne«ihy striking
out the first row and eolumn of (5), and the determinantof the result-

ing arrav is casily found to be n. Hence O
7 i AV
ain = - = - P
11 nz n v/

The density of 7 is therefore N
. 1 = "’ . 3
L(E) = —— YR ®
V2

Since
AN CE -
A= (7
$E
we may transform (6)3]:;:;.,»’(7) to obtain the density of 7,
N\ W
uta) = L Y o ®

.§ o \/2« o
by equatiod (1 13) since dg/dE = 1/a.

T hﬂ'd{b”t\rlbutwn (8) is the distribution approached by the distribu-
tion ohgfor any population with finite variance as n becomes large, as
we have seen in Sce. 7.6.  We have shown here that the distribution
18 exactly the distribution of the sample mean for normal populations

whether or not the sample size is large. ) o
10.3. The Chi-square Distribution. We shall obtain the disiribu-

tion of
k -
- 3 (=) 0
73 pA . |

=
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where the a; are normally and independently distributed with means
u: and variance ¢%.  In the joint distribution of the x; we again trans-
form the variates to
Ti = M

CE

i =

in order to simplify the equations; u ig then eimply Z¢4. The method

of moment generating functions will be employed to obtain its dis-

tribution. "\
The moment generating function of w is N

m@;( ) f f f 20 g Ev*[ld@a =

si‘

and the multiple integral may be wrilten as the prqduct of & integrals

of the form
1 - ) ¥
1 8-%(1_%;?;1\3% (3)
e

. The integral (3) has the value 1 /\/,1’:—’ 94 since multiplication of the

integral by /1 — 21 makes it r(epgé;‘%}:nt the area under a normal curve
with variance 1/(1 — 2¢). It fellows that
~ N | k42 1

The moment genergﬁnﬁ function is of the form of the moment generat-
ing function for alghmma distribution (Sec. 6.3) with o = (£/2) — 1
and § = 2. Wefmay conclude therefore that the density of u is
£\S 1 1 .

\~f(u) = m oF7i A u >0 {(b)
Thls particular form of the gamma distribution is usually referred to
as, i -square distribution with & degrees of freedom. The variate u is

mmonly designated by the square of the greek letter chi,
i

=10 ¢

1

kenee the name for this distribution. The phrase degrees of freedom
refers to the number of independent, squares in the sum in (6}; we may
think of it, however, as merely a name for the parameter k in the
density (5).

We may notice here that (5) gives cssentially the distribution of the
200
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maximum-likelihood estimator for o* in normal populations when
p is known. It one considers samples of size n from a normal popula-
tion with known mean g, the maximum-likelihood estimator for ¢2 is
found to be
1 o?
8= 2 ==L
¢ nz (2 = #) "
"
where u = E [(x: — #)/¢]* has the chi-square distribution with =
degrees of [rcedom.  The density for the estimator is therefore ~
flgt) = 1 . i (@2 —1g—nt2/2at 6N
[(/2) = 11\20? &L
sinee Y

\
P |
N

"\ N
This is & gamma density with « = (#/2) — 1 and\3\S/2¢%/n.

The chi-square distribution is partially tabulated'in Table IIT; the
most complete tabulation is Karl Pearson's J"Z_rhbles of the Incom-
plete Gamma Funclion” (Cambridge Univessity Press, London, 1922).

10.4, Independence of the Sample Mgé&' and Variance for Normal
Populations. Ordinarily the mean of&*population is unknown, and
we are rather more interested in the\estimator (1/#)S(w; — I)? for o
than in the estimator (1/n)3(zrss p)? considered in the preceding
section.  We shall now derivé, the distribution of this estimator and
show incidentally that it .is:jéﬁstributed independently of the sample
mean. N

au_
dg?

Lla

We shall les O
:’1\ / L= BT K : 1
A - (1)
:“\':‘. 1 .
& w=m (0w @
A A

~\J p = (y{ — y)E . (3)

. \ } : ;

and find the joint moment generating function for » and », say,
m.(tj_, tg) — E(e£1u+1.3g) . (4)

)

- f [ o [ (i)m ot w2 =420 [ | dy;
2r 1
1' ns2 ) i o

= / [ e / (__) -z (u=23w—0 [ gy (5)
2?7 1
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810.4 , SAMPLING DISTRIBUTIONS

The quadratic form may be written

Ey? - % (2 %)2 - 2522 (g — )2
= ZZJ% - % (Z ye)2 — 2, E ¥ + 2t (6)
(1 -2y g~ 2028 )

H

1l

= X Zoyy; (7}
where O\
" 2(t, — & .
o-n=1_252_,..(_‘!1n—)=a Ko
S
oV = — _2(“1__‘2 = b i#i A
n N

. . . . 4O
A determinant of order » with ¢’s in tho maisdiagonal and ¥'s else-
wherc has the value v

(@ = B)"a + (n AsHb]

Hence x\‘
Uty — 1) 204, D py
[1 _2,5,_. A —t) m—1 21, — gg):I
N n n
= (1 — 2)»1(1 — (2t (8)

From the multivh(ﬁfe normal distribution it follows that

.u?\“:} “ . 1\™* — 162 Botiyay L _:1___ g
x.)é..'}, /(2_7r ¢ i [I dy; = .\_/:U_ﬂ )

."\\~
henee tk@ihtegral in (5) has the value

"\:‘:' 1 g 1 (n—11/2 (10)
~\J mty, t) = (1—_2—51) (m;)

\ 3}

The fact that the joint-moment generating funetion factors into a
function of ¢ alone and a function of {2 alone implies that u and v are
independently distributed. We shall not prove this rigorously but
merely indicate the argument. Similar reasoning to that employed in
Sec. 5.4 will show that if two distributions of several variates have the
same joint-moment generating function, then the two distributions
are the same. We have g density, say f(u, v), with joint-moment
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INDEPENDENCE OF THW SAMPLE MEAN 8104

generating function (10). Given the marginal distributions Si(u) and
fa(¥), we may form the bivariate function

g(w, v) = fi(W)fe(v) . (11}

which is clearly a density funetion. Furthermore its moment generat-
ing funetion must be
m{ty, MmO, t) (12}
where
mly, L) = [[ewsterf(u, v)du dv (13)

Bince (12} and (13) are identical hy (10}, it follows that ¢(u, v} amd\
Jlu, v) are the same density and henee that f{u, #) is equal to the,Ardd-
uet of its marginal densities. O
The two [actors of cquation (10) are each of the form of ghg moment
generating [unetion for a chi-square distribution; henee itpfollows that
% and v are each independently distributed by chi-square distributions,
the first having one degree of freedom, and the seednd n — 1 degrees
of freedom. The fact that « = ng?* is distribufg¢d s chi square with
one degree of freedom is in accord with the ¥osults of Sees. 2 and 3.
For we have seen that # is normally distiibuted with zero mean and
variance /%, and from the result of Sec, Fwith & = 1 it follows that

-0 ,'“_ (f - u)g
U = W _.f?f?’yg =7 - {14)

must have the chi-square digfribution with one degree of freedom.
The funetion RN

n\\ ; (]

v 5 - 9 = E(x‘ B “’) (15)

ANS 1

has the dist-ril:;u{%n given by equation (3.5) with & replaced by n — 1
ingtead of ?i.‘:és vould be the case if the deviations werc measured from
the populadidn mean. It is sometimes said that one degree of frecdom
is lost 5y ‘taking the sum of squares of deviations from the sample
Medy father than the population mean, or that one degree of freedom
1s used up in estimating the mean. While v in equation (15) is the sum
of n squares, the squares are not all functionally indepeadent. The
relation Sy, = ng enables one to compute any one of the deviations
¥ — 4, given the other n — 1 of them.
In terms of » of (15), the estimator

¢* = %Z (z: — Z)* ' (16)
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has the value

2.

g

G2 = =
T

The density for this estimator is therefore:

57} = 1 I (n_lm(*e (7= /28220 17
10 = G () 7
All the results of this section apply only to normal poepulations, [t
can be proved that for no other distributions are (1} the samplé rean
and sample variance independently disiributed, or (2) the sum Qle mean
exactly normally distributed, or (3) the sum of squares of\dé¥iations,
from either the population or sample mean, exactly distributed by the
chi-square law, N
.b. The F Distribution. A distribution which &¥e shull later find
to be of considerable practical interest is that.of {he ratio of two (uan-
tities independently distributed by (:hi-squaqeﬁlaws. Suppose ¢ and »
are indspendently distributed by chirsquargdistributions with m and »
degrees of freedom, respectively. Th{fii"; int density is, by (3.5),
1 N/

Q(m-{—u,} ] L

Flu, 0) = [im — 2)/2[M(n — 2)?{2]

We shall find the distribution®f the quantity

=22 (n— ) A2 uted (] )

R= 0 U (2)
A win  omw
- which is sometimepveferred to as the sariance ratio. We shall find the
density of F by"c{fi}ﬁina.t-ing % in terms of £ in (1) and then integrating
out » from t-th’ Iesulting density. Since

)Y du  my '
N/ -_— 3
.'s\ EIF T ( )
an@g}ﬁée F is a monotonie function of %, the joint density of 7 and ¢ Is,
'{’ab;’w’
1
g(F, v) =

[n =) /2] = 2) /2] 27

BTy (m—2lsg
v(n—-g)zz(@ﬁ) ¢ —Meroerm] T g
7 n

To integrate out », we must evaluate the integral
f = ﬂ(m+n—2)zze—-;§n+(mwn)]«.- dv ' (5)
0
204 .



THE F DISTRIBUTION §10.5

of the factors in (4) which involve v. We observe that the integrand
is, apart from cerlain constants, the integral of a gamma density over
its whole range. In fact, if the integral were multiplied by

{18[1 + (??I-F/??,)]}(M+n)f2

[Gn T = — 2)2]1 (6)
it would be exaectly the area under the gamma density with
g=mtn=—2 A
2
L\

and g =

1 .
ms and would have the value one. H?:r%ce the

value of (5) Is the reciprocal of the expression (6). The ée&ity of I
is Ltherefore
- N

R(FY = ﬂ) " g(F, o)de

2 m 2 1y oF

Mmoo oW 7 %Y " 1 e

m)pr ﬁﬁ, CRag 2(l+n)”d
) 2

1
=(m—2)!(?_1.—2)!2m7ﬂ1-(; :.t o
2 2 o\ ¢

._)2_. W Fr . pog )

I
/"":x
= .
bt |
|
\“l-n_-!'/lm
‘
13
bl 1
R
e
7
4 3 {'-\
HEIE
i
—
E
5
E
(SN
Iz

a funetion with two pazameters m and n. These parameters arc also
called degrees of fme{{b}ﬁ'; thus (7) is called the F densily with m end 7
degrees of freedo {the number of degrees of frecdom of the variate u
in the numerajgofof F is always quoted first.

Five DOin&\ffﬁ the upper tail of the cumulative digtribution of F are
given in T;«_;ble V. More complete tables may be found in the refer-
ence.f\im{ﬂ'in the footnote to Table V and in Fisher and Yates, “Sta-
Ustigal Tables” (Oliver & Boyd, T4d., Bdinburgh and London, 1938).
The reciprocals of the numbers in Table V provide five points on the
lower tail of the cumulative distribution. To evaluate in general an
integral of the form

b
Pla < F <b) = [ WPYF
ohe may transform ihe distribution to the beta distribution and use

Karl Pearson’s ““ Tables of the Incomplete Beta Function’ (Cambridge
2086



§10.6 SAMPLING DISTRIBUTIONS
University Press, London, 1932). The required transformation i

mif/n

Y ETT (b §

which changes (7) to a beta density with paramefers « = (m ~ 2);
and 8 = (n — 2)/2.

10.6. “Student's” { Distribution. Another distribulion of consider
able practical importance is that of the ratio of 4 normally distribute
variate to the square root of a variate independently disfibuted by
the chi-square distribution. More precisely, it o is oty ly distrily
uted with mean x and variance a?, if @ has the ¢hios g (it ributior
with & degrees of freedom, and if 2 and u are inde pendl uiftly distributed,

we seek the distribution of o\
& =W/ (¢
t = - = .mg (1}
\/ w/k
and letting o\
y = ST
- .U: \
¢ becomes

The joint d‘en'git'jf of ¥ and » is

N

1. 1 ,
fy, w) = ‘\7? 6~ {(—k‘jmfp s
and we find the dis l‘ib;.tion of { by the same procedure as was used in
the preceding segt\zbn. We substitute for ¥ In terms of £ (y = £ vk}
i (2) and th?n integrate out % from the resulting function, The fnal
result is ¢

];,(g):%é-—m "___71__*__‘__
A Vi [(k — 2)/21[1 + @nyeins
a disttibution with one parameter £, which is also referred to as the
L Jumber of degrees of freedom of the distribution. Since [(x = p)iof
\\ has the chi-square distribution with one degree of freedom, it is evident
from (1) that £ has the F distribution with one and degrees of free-
dom. The cumulative form of the distribution is partially tabulated

in Table IV. :

10.7. Distribution of Sample Means for Binomial and Poisso?
Populations. In the preceding sections we have illustrated the two
methods of finding distributions of functions of eontinuous random
variables deseribed in the first geetian. Here we shall illustrafe
the technique for diserete variates in two cases of particular interest:

206
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If 2y, @2, © - -, ¥ i3 a sample of size % from the binomial population
which has density
fle) =p¢= 13=0,1 (1)

the joint density of the x's is simply

f('?-:l! Lz, © 07, zﬂ) = pEaezqm—Ez; &= 03 1 (2)

a funeticu of the random varintes, and it is evident that the only'\i.m%~
sible values of & ave 0, 1/n, 2/n, - - -, 1. The probability] wli/ny,
that T takes on the value j/Mis oblained by suraming (2) over all sets
(#1, 22, » * *, %) such that {I/%)Zx = j/n, or such? that’ Sz = 7.
For all such sets, f(zy, 22, + + + , x4) has the same Valﬁﬂe\it)"g”‘"; hence
the sumn may be evaluated by multiplying this valiie\NSy the number of
sets (21, 2, © - v, 2.) with the required specification. The number
of such sels is the number of arrangementg of\j*ones and n — j zeros,

.. fa O
which iz (J) hence \
W

R S

j — L | tt—3 V:’:}i;—- }. g PR

as we have found already m‘%cc 7.7.

In o similar manner \?\\may find the distribution of the mean of a
sample, 1, &y, - (&, from a Poisson population. The joint
den‘;ltV of the ohsuvamom is

The sample mean is

\ & ”“p
f(" ;:‘31"2" T, & = O? 'I'} 2! T (4)
\K’ ll s}

usmg\;;"ﬁ;r thc parameter of the distribution. The sample mean T can
Ob‘?‘@fﬂ} have any of the values j/n wherej = 0, 1, 2, -. Fora
particular value j,/ %, the z's must be such that Zz; = j; hcnce

3 :

J- g !-"rf
g (;L) N !

Ex=§

A ]
oy Z T (5)

i =g
207
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§10.8 SAMPLING DISTRIBUTIONS

The sum can be performed with the aid of the multinomig] theore;
which, on putting all z; = 1 in equation (2.5.2), states that

The sum is therefore #//71 and the required density is

ey G2
g(ﬁ) gt a0 N (6
The function may be written explicitly as a function Qf\'.'?.‘t.\
N A (I A\ ]
g(x) - (n.f)! .:.' (7J
N\

We may notice that since there is a uniqueledrrespondence helween
T =j/mnand j = 2z, the density of jis

7
=R § P s
M) = ST S0,

and hence that the sum of # gbéé?vations from a Poisson population
has & Poisson distribution Jith the parameter equal to » times the
arameter of the original distribulion.

10.8. Large-sample Bistribution of Maximum-likelihood Estima-
tors. We have in\;e’g’%ﬁlgated several special problems in sampling
theory not only toillustrate the methods of finding sanipling distribu-
tions, but bec@ps:e the particular distributions we havé obtained are
important in\&pplied statistics. They are sometimes referred to s
“small-sa.rmile’ distributions,” though of course they hold for large or
small g m”};ieg and the term s merely meant to indicate that they are
valid small samples. In this section we shall consider u distribu-
tiogtsmtich more general, in the sense that it i more or less independent

.Qf,}he form of the population distribution, hut valid only lor Jarge
Ngamples.

We shall firgt consider the case of one parameter ¢ in a density
f(@i; 8), and we shall show that the maximum-likelihood estimator
8z, zg -+ y Zx) for 6 from samples of gize n is approximately
normally distributed under raihes general conditions where # is large. _
Before doing 80, 1t is necessary to consider the variate

u@) = 2 log f(a; 0) (1)
208
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The expected value of « is

oo

B = [ 7 [ Z1og ste | s e @

- [ 2 1 00 @

._-ﬂ'_q)_"(*;t: ;'6) is such that the operations of differentiation and integration
may be interchanged, then

£ = 3 [ stos oy O
- 2w =0 @

Henee, if this condition is satisfied, the variance of u,ﬁs"

7

~ [laronses o o ®

B

.

1 {3f(x; 6) Q-
- [ &9 (T)‘fx ©

and this may be put in another foriﬁ “which is more useful for our
purpose.  On differentiating (2) with respect to 4, we have

- n\ )
0= 535 / (a_aé log f{z; Q)i}’x, 8)dzx

= f (;%22 log f@\;.;é}’) s )z + f (5‘% log f(z; a)) W2 0) g

[ (a2 o 1 (ofz; O\
- | (el 0) vt [ g(T5 ) @ o

N\ .
Tha integ;rt}l\in (6) is thercfore minus the first integral in (7), and we
may write )
Y ey

\ } gl = —E (ai; log f(x; 6)) {8)

Now Suppose a sample of zize » is drawn from the population. Thig
will give rige 10 g sample of u values:

W= u@) = o log fla ) i=1,2 -+ ,n ©)
' 209
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Applying the central-limit theorem (Sec. 7.6} to the sample of 2’ s, w8
may state that
i = -]- Z (2
n

is a.pprommate[y normally distributed for latge # with zero mean and
variance oi/n. Remembering that the Hkelihood of the sumple of
2's 1s IIf{(w:; 6) and that its logarithm (See. 8. 4) 1

L = 2 log f(x;; 6) (10)
O\
we have
- 1 6}; ’.\\\’
U = E a}- '.\ N (ll)

Hence it follows that 87/ is approumatcly nounalh; d wmbuted for
large n with mean zero and variance no?

This last result enables us to find the dlstrzbu’r‘lbn of the estimnator 6,
We shall suppose that 8 is a root of

aL
ag

i.e., that L actually has zero blopc ‘at its maximum value. And we
shaH suppose that aL(4)/a0 as K fitnetion of 8 may be expanded o a
Taylor serics about 8: N

oL(8)  aL(#) 6'%5(8) LG 5 2

bk o S A NP, - — M 13

el 63 \+ ag! (@ 2 + 2'693 ¢ =9 (13)

where § is some poi t\between  and 8. Bince 6 is a root of 3L(8)/9,
(13) vanishes, and\we have

\;

=0, (12}

’“/ .

N

D) _ °L(6) FLO) 5
N Bl R 8) — 5ragr G — 8 (14)

Now we\h@&é seen that
;~.‘\ aL(8)
¥ \/«,Ta g, 00
a:pprox:imately normally distributed for large n with zero mean and
\lmt variance. Using (14}, this expression is '

—_l_._.aL(ﬁ) - _ 1 aZL(e) g :?'-__ 1 4 L(ﬁ) \ p
Vna, 08 Ve, a6° ®—6) m 21970 -0 @15

and on the right we shall substitute w = /7 ou(6 — 0) to get

1 aL(8) _ 171 L) w? 1 5311(0)] (16)
= o) 1T1 3] 1 9%L(9)
Ve, ag o2ln 96 Vol | n 2bas -

210 :
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The firsl bracket on the right of (16) is simply an average for samples
) &2 .

of size n of D log f(x; 8) and by virtue of (8) has a mean value Fi.

Furthermore, if this quantity has a finite variance, (1 /) (32L/39?) will
approach oF with probability approaching one as # becomes infinite,
The first term of (16) is therefore nearly w for large n. The gecond
term of (16) approaches zero because of the factor 1/4/% if we assumo
that the average of the third derivative of log f(z; §) eannot become
infinite {or any possible value of 4. The right of (16) iz thercfore
approximately w, and since the left of (16) is approximately normad,
with zero mean and unit variance, it follows that w has approximately
the same distribution. We have finally that 6 is, for large sagnples,
approximately normally distributed with mean 8 (the true péraineter
value) and variance 1/nel, where o2 is defined by (8). (Tb,e mean 8
will be ihe exact mean of § for any sample size only if § #83n tinbiased
estimator. In general, we have seen that maximum?ﬁkelihood esti-
mators are not unbiased so that @ is the lorge-sqmplé mean, ie., the
value approached by the mean as 7 becomes largé. Similarly 1/no?
may be the exact variance, or it may be onlydhe limiting form of the
exact variance as n becomes large, the Jargt-sample variance. One
could, of course, compute the variance _of PFdireetly by

- E@F = [ - - - [l= BOMw; 0de

rather than by means of equatiﬂﬁ'(S), but this is usually the more
difficult computation, '

The above argument is dj(k, of course, a proof of the asymptotic
notmality of 4; we haye™miercly outlined the naturc of the proof. A
rigorous demonstratioh yequires careful evaluation of the crrors in the
Various approximatiens. While the maximum-likelihood estimator is
approxitmately njoi*nially distributed for large samples under rather
general condit{ons, it is to be remarked that several conditions on the
original digfribution must be fulfilled:

(1) W¥Must be permissible to interchange the opcrations of integra-
o With respect, to x and differentiation with respect to 6.

(2) The expected value of 6—(13 log f(z; #) must be zero.

a8t . .
(3) Y log f(z; &) must have finite mean and variance.

4) éai}f; L(8) must remain bounded for all possible values of 6.

(5) The derivative of L(6) must vanish at its maximum.
' 211



§10.9 SAMPLING DISTRIBUTIONSE

These conditions will not be fulfilled, for example, if the parameter ig
the range or a function of the range, for then (1) is not satisticd., We
have seen in particular that if 4 is the range of a rectangular distriby-
tion, condition (5} 18 nokfulfilled.

For a wide clgss of distibutions, however, the maximum-likelihood
estimator is apﬁl oximately pormally dlstrlbuted about the true param-
eter value as/a mean for large samples. This is & powerful tool for
solving man_\/important proplems of applied statistics as we shall gee
in the following chapters. |[he theorcm is applicable Lo discétte as
well as to egntinuous distribdtions. The only change in the Locmomng
for diseretg distributions wolld be replacement of the Juf(‘gml slgng
by summagion signs. \,

A stra.lghtforu ard extension of the argument will i mr:ule an analo-
gous result for the large-sangple distribution of sea eral parameters,
We shall;mele]y st the resplt:

ol ators 81, B, < ﬁkfu; the paratheters
{rom sapipies of size n oy, for large
thc}nuit@ra??ala 1 mn.E distribu-

(17)

cF where

s 18)

S

same 48 those\gwen in ihe case ¢f one parameter,

The| thelorbms obviously depgiid in no way on the {384 that we have
used s ariate distributions. /| The variate z in all #he statements of
this, se tion may be replaced, h_‘y s set of variates (zfy, 2, - - ).
‘”‘109 Applications of the Large -sample Theory/ To illustrate the

¢ of he theorem just given, we may fnd the | rgc-sample distribu-
tion foR the estimators of the twa pargmeters of the normal distribu-
tiom:  We shall write it in the for

The cpnditiond\finder which thi theorem ig frue are egsentially the

1

f(z; 6, 82) = o= (17260 (a— 32 0

/.'"' Y 211'5:2

For samples of size n we have seen that the maximum-likelihood
estimators are

212
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61=%Zx; . (2)

Py = = . . (3)

In accordance with the thestem, these estimators\will be approxi-
mately normally distributel for large samples with
and cocflicionts ne¥ in the quadratic form, where

N\
4D
. A\
Since N\
« \J/
T — 61)2 ‘}‘. (5)
(9
the required derivatives O
“
and heeayse
E(z) =
the o are readily seen Loabe
(6)
The largeasample distribution of the estimators ig, fherefore, say,
O (elma;nz (a— g
] M

&
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Sinceoyp = 0, the estimators are shown to be independently distributed
for large samples; we have already seen, of course, in Rec. 4 that they
are actually independent for any sample size. The lurge-sample dis-
tribution of & is exactly the normal distribution as given in (7). But
the exact distribution of 4, is given by the gamma distribution for any
sample size and this appears to conflict with the normsl distribution
indicated in (7). However, it can be shown that the evael distribution
of §» does approach the normal form
~ .\

1 \/}? 1 -z \

— A5 ¥ i O\
\/Q?r 2 52 a $ \“.

'\
Ny

as # becomes large (see Prob. 38, Chap. ). A\

As a second illustration, we shall ohtain the largg-sﬁumf)le rlistribution
of the paramoters of a multinomial distribmtiogeN"

Suppose the elements of a population madnb classified into b + 1
categories, say Ay, As, -+ + , Ar. We siiwdl describe an rlement by
the set of variables (v1, 24, + - - | e ) &here, if the element belongs
to 4;, 25 = 1 and all the other 'y arcnzero. I the probahility is g
that an element drawn at random joeiomgs to Ay, ihen the joini density
of the z's is AN

LR Y

fl@n zs, - - ) = j})flﬁt}f;' C P =01 Zx =1 @
where 2p; = 1. Sumlznijsfg Fley, - - o, aea) over all possible sets of
#’s, namely, (1, 0, 0 L, 0), (0, L0,0, - -, », G010 - -,

0}, and so on, we have
' Bt

\ 'Ef(xl, Ty T = E pe=1
'o\.. i=1

&
The disitibltion (9) is a multivariate distribution with & functionally
indepé};dent parameters; we shall talke them to he P pa, - - -, peand
thittkk™of pyy1 as a symbol for 1 — PL—P2— -~ p
\th a sample of size # be drawn, and let n; be the number of sample
elements in A;; then Zn; = % and the likelihood of the sample is

k41
H P
i=1
the logarithm of whieh is
k1
Lpy, ps, - - - P Pr) = 2 i log p (10}
i=1
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The estimators arc found by putting the first derivatives of L equal to
gero and solving for the parameters. The equations are

al  m1 gy
891 P1 Pert
Al my g
dp: P Pep

(11)

and so on, remembering that pgp represents 1 — oy — po— - - -
~ o On mulliplying the flrat equation by pipreq, the second byQ
pepryr, and so on, and adding Lthe results, one finds pra = fesr/ne b4
then that 'S

£
« N/

%
~

pe="0 d=20 0,k OY @2

¢

We wish to find the approximate distribution of thisl}st-imators in
{12) for large samples.  Applying the theorem okthe preceding sec-
tion, we know that the distribution is normal and ’t}x‘af the means are pr.
We need only to find the coefficients ne® of chg\quadratic form. By
equation (8.17} QO

3
/
& N

g 92 8%
i _F ON ] 13
o =~ (%: ) a3)
Differentisting log f, we have  ~3°
42 N o .
g f Ty o 7]
adp; Ay \\’ L1 (14)
A x; Trpt o .
& : —_— — -—2 — T- lf 7 == 3
¢} pi ]Dk+1
and taking expccte(\iyalues,
’"\::' B
N B@) = Y fll PE =i (15)
A\ k4t
..\‘:\, E(ﬂ?k+1) = 2 Tayl l;[ PF = Pyt
Thus
oif = Lo if 4 5]
-1
ST S (16)
Di  Peyt
and we may write these two relations as onc using the symbol &y,
Usf:isﬁ_;___];_ =12 -,k (17)
D Prr1

216
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&1
The value of the determinant [¢%) can be shown to bo 1 / Il 2:; hence
1

the approximate large-sample distribution of the estimators 18, say,

& &
Eo_u °_f_’)_h

" h.? ‘E ﬂ(;m Vo B r—p)
—ne e i=1i=1

k
g(ﬁl, Doy = !f}fr) = (§w>2
1 ~

N
AN

'\

Oif = p.-(l - }'J;') (‘:.';.
Gig = —Pip; i '75.7 é; j = 1! %'\"\" "y i

The inverse of {o¥/|| has elements

(19)

as may be verified by computing the produst 1% o). The large-
sample variances and covariances of the eptimators are therefore given
by multiplying (18) by 1/n. These happen to be, in fact, the exaet
variances and covariances for any sataple size

10.10. Problems

1. Apply the method onGk'li.fation (1.4} to the example treated in -
equations (1.14) to (1.17). ™

2. Iz is distributed ©% J(z) = 2,0 < 2 < 1, find the distribution
of u = {3z — 1) |, \“

3. Ifxris distrib&hed by fz} = 1,0 <= < 1, find the distribution
of Z for samplegyy) 2, of size two. Observe that the range of x; for
byed 2 is 0%, < 27 when 7 < 14, and 27 — | < xy < 1 when
e

4 If\g< 48 normally distributed with mean & and variance &2, show
by trahsforming the variate that » — [(z — 1) /5] has the chi-square
digtribution with one degree of freedom.

“\*B. Obtain tho distribution of the mean of u sample of size z from &
ormal population by using the momeant generating function.

6. If », x%, x2, « + - - xi are independently distributed by chi-
square laws with ny, s, - - - » 1 degrees of freedom, respectively,
show by means of the moment generating function that v = Zx% has
the chi-square distribution with 5 — Zn; degrees of freedom.

7. Using an argument similar to that given for the derivation Of‘ tﬁe
chi-square distribution and the fact that [(1 — 2f)o%] = (1 — 28)%e",
show that the quadratic form of a k-variate normal distribution has the
chi-square distribution with 7 degrees of freedom.
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'PROBLEMS _ 810.10

8. Find the mean and varlunce of a chi-square Vanate with &
degrecs of freedom.

9. Use the integral of the # distribution over the whole range to
obtain an identity in the parameters m and n, and then use the identity
to obtain the mean and variance of F.

10. Find the .85 probability level of F for two and four degrees of
freedom by direct integration of the distribution funetion.
v11. Show that the transformation

w — — mE/n . ¢
IF (mF/m) A
L\
" changes the F' distribution to the beta distribution. . O

12, Show, by trunsforming the variate in the ¢ dlstnhu.’rlon, that
% = i? has ’the I distribution,
V13, Iy, o4, ¢ ¢+ ¢, %a is & random sample from a norrhfﬂ populatlon
show that
:L' —_— # ¢\\¢:
(z(x — %), \‘
nin — 1)
has the { distribution with n — 1 dcg};ees~of freedom
~ 14, If 2; and z, are 2 random sampIe of two from a population with
f&) = e & > 0, show that ua— %i+ z2 and » = z/22 are inde-
p(‘ndently dlstnbuted
v'1b. If %, 9, z have the Jmn"t\{enblty
\\
P ]
1@ v, z) ST Tz +y T

find the dzsmbutﬂ)ﬂ of u=z+y+=z

v16. Tf 2, andzh are a random sample of two from a population with
the uniformd (distribution over the unit interval, find the distribution
of U = gl

‘/17\*1}&6 and y have the bivariate normal distribution, show that

&y e8>0

L] Ty

and
T — fHy ¥ T My
[ Oy

are independently normally distributed with zero means and variances

21 + p) and 2(L — p).
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§10.10 SAMPLING DISTRIBUTIONS

18. If z and y are independently normally distributed with zerg
means and unit variances, show that u = a2 - y*and v = 27y are
independently distributed. What are the names of the individual
distributions of % and v?

19, Bhow that ‘“Student’s” distribution approaches the normal
form when the number of degrees of freedom becomes infinite.

w20 If w1, 2, + -+ | 2, are a random sample from a normal populs-
tion, find the joint distribution of ’
& n "\
u=2x;' and vzzxi 0<r <k <y
1 r e\

AL If ¢ and y are independently distributed by .Eif?lltfﬁ.(.lll."l.l‘e laws
with m and » degrees of freedom, respectively, sho@ ™ that o = 2 +y
and ¥ = z/y are independently distributed, O
v~ 22. Consider samples of size n from a bivayidd normal distribution.
Using the notation of See, 9.7, show that
AN

Vi = 1(E = b+ &)

?_ I X ‘"-'_
Vb4 duf 57264,

has “Student’s” distribution with — 1 degrees of frecdom.

28, If z and y are horizontaland vertical components of 1the devis-
tions of a shot from the centerof g target, and if » and y have a bivari-
ate normal distribution;@th 2ero means, p = 0.1, and standard devia-
tions of 10 inches, fnd(the equation of an ellipse which will contain a
shot with pmbabilit}x. 3. (Use the result of Proh. 7.)

/24, Find the mdedn and varianee of (1/n)Z{ax; — Z)* for samples of
size n from a nérmal population, and show that they approach the
large—samp}eﬁn“ean and variance, o? and et/ n, as n inereascs,

25. I dwy, « -+ - » & are independently and normally distributed
with ;nﬁ%s # and variance o2, show that

\ )

where the g; are constants, is normally distributed with mean o

and variance Za%et.  Then deduce the disiribution of the sample mean

from a normal population by putting a; = 1/n.

26. Obtain g result similar to that of Prob, 25 when the z; have the

multivariate norma] distribution.

27. Find the large-saraple distribution for the estimator of the
barameter 8 in the pamma distribution. '
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PROBLEMS : '. £10.10

28. Find the large-sample distribution for the cstimator of the
parameter of the Poisson distribution. _

29. If (ww, %20, * 7, %wa), @ =1,2, + + | nis asample of size n
from the multinomial population with density R

5 }
I;[Pf" -’Ci=0,1;2$‘-=1;2p¢-’—-l

find the distribution of the variates n;, = E Zig, and find their variances
[ . §
and covariances.

30. Verifv that | defined in equation (9 19) is the 1nver§e‘ o\f’

Jes;
ile¥]| given by equation (9.17), . QO
31, Evuluate the determinant of j|oy,] in Prob. 30. N
w32 Iy a0 0, 3, are mdppendently normally dlstrgbuted with
the same nmu.n but dlffcrc:nt varianeces ¢f, o3, * * N &a, show that
u = ;11’!' 7 fandy = By — u)?/od are1ndependent1v~dwtr1buted Show

also that » is normal, while v has the chl-sqﬁare distribution with
n — 1 degrees of freedom. Y

33. Lot ® denote Z(z: — B)%/(n — 1), whe mean square for samples
of size n. Tor three samples from norn:IaI populations (with variances
o, o, and ¢%), the sample sizes bemo‘ ni, #s, and ng find the joint
density of ~

a5

st
" ="Té‘-”} and o=
where the s,? 52, and $hs 4re the sample mean squares.

34. Lot a sample gf Size n1 from a normal population (with variance
af) have meun sc ﬁhre s, and let a second sample of size n; {rom a
sccond normal\Qopulahnn {with mean g and variance ¢§) have mean
Z and mean sqﬁalc s}. Find the joint density of

."\ » - 2
m\J &
"\ 3 = e &k a,Dd y = 1

\‘ : 82 Eg
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w—THAPTER 11
INTERVAL ESTIMATION

(L R Confidence Intervals, A point estimate of o parameter is not
very meaningful withoul some measurc of the possible crrordih the
estimate. An estimate & of a parameter # should be rgm panied
by some interval about 8, possibly of the form § — ¢ 10 § AN together
with some measure of assurance that the true poramelr ¢ does lie
within the interval. Estimates arc ofien given ingych form.  Thus
the clectronic charge may be estimated to bg'\(ifi’ﬁ) 400810
electrostatic unit with the idea that the firstJadtor is very unlikely
t0 be outside the range 4.765 to 1.775. A eost accountant for a pub-
lishing company in trying to allow for al{fﬁ}:hors which enter into the
cost of producing a certain hook {(actglyproduction costs, propertion
of plant overhead, proportion of excclibive sularies, ote.) muy cstimate
the cost to be 83 1 4.5 cents per afiume with the implicalion that the
carrect cost vory probably lies l?ét'*’cveen 78.5 and 87.5 cents per volume.
The Bureau of Labor Statistics may estimate the number of unem-
ployed to be 2.4 + .3 mill{dus at a given time, fecling vather suvethat
the actual number is betsveen 2.1 and 2.7 millions.

In order to give brecision to these ideas, we shall consider a par-
ticular example. Suppose a sample (1.2, 3.4, 0.6, 5.6) of four observa-
tions is drawnyfebm a norraal population with unknown mean x and
known standard deviation 3. The maximum-likelihood cstimate of #
is the mﬁn\éf the sample observations:

S F—27 )

N
We'wish to detormine upper and Iower limits which are rather ecrtain
t0 contain the frue parameter value between them, "

In general, for samples of size four from the given distribution, the
quantity

F—
y=t s ®

will be normally distributed with zero mean and unit varisnce. 93‘__i5
the sample mean, and 3¢ is «//%. Thus the quantity y has a density
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CONFIDENCE INTBRVALS §1i.1

I '
= g_ﬂ(
@) o 3)
which is irxlependent of the frue value of the un.known parameter,
and we ean compute the probability that ¥ will be between any two

arbitrarily chosen numbers. - Thus, for example, -

3 3 = ) 3 =
P(—1.96 <y < 1.96) fwm fdy = 95 )
In this relation the inequalily —1.96 < g, or
_ Oy
T— g A
—1.86 < " O
34 A\ gt
is equivalent to the inequality A0
B E 4 35(1.96) = B+ 204 K"
and the inecquality v
y < 1.96 \\\“
Is equivalent to \
p>I— 20840
We may therefore rewrite (4) in tho fmrm
P(z—294<,u{a:J—29—1)h .95 {5)

&

and substituting 2.7 for z, ) \
P(—\?é < < B.64) = (6)
Thus two limits have b(.en obtained (—.24, 5. 64), which we may say
are 95 per cent ceLt»a}n to contain the true parameter value between
thern, N |
The meani “(\f“(h) needs to be examined carefully. 1t appears that!
# 18 the varighle and that the statement implies that the pr obab1hty|
that the xa;mblepllw between —.24 and 5.641s.95. Thisis, of course, |
Tlonsenﬁe:\ #is'a fixed number, the mean of the population sampled. ! !
I lllt})ermor‘e the true mean g either does or does not lie between — 24'
5.64, The only correct probability statements possible in thlsJ
Sltuatlon are
P(—.24 < p < 5.64) =

if g actually is hetween the numbers, or
P(—.24 < p < 5.64) =0
if 1 ig not between the numbers. It is possible, however, to give {6}

 mesaningful interpretation,
221



g§11.1 INTERVAL ESTIMATION

The statement in equation (5) does have meaning. The probability
that the random interval, T — 2.94 to & + 2.94, covers the true mean
w#is .95, That is, if samples of four were repeatedly drawn from the
population, and if the random interval £ — 2,94 to 7 - 2.04 were
computed for cach sample, then 95 per cent of those intervals would be
expected to contain the true mean g.  We do therefere have consider-
able confidence that the interval — .24 t0 5.64 does cover the brue mean,
The measure of our eonfidence is .95 hocause before the sample was
drawn, .95 was the probability that the interval we were going to
construct would cover the true mean. In (5) the number O5s 5 true
probability; in (6) it is not a true probability although i &R measure
of our confidence in the truth of the statement on the ICTy ol {6). We
shall eall it the confidence cocflicient, or the Siducial plobubility, to dis-
tinguish it from our ordinary eoncept of probabifly.’ And we shal
rewrite (6) as ST N

Pr(=24 <p < 564) 2005 (7)

and read it “The fiducial probability 1 4 the interval —.21 to 5.64
covers the frue mean is .95.° TheMNyprd Aduciad indicaies nothing
more than that the probability assobidied with the given interval was
-85 before the sample was drawad®
The interval —.24 to 5.64 .jéji’:alied a confidence tnterval; more spe-
cifically it is called a 95 peRtent confidence interval, the confidence
coeflicient, or fiducial peobability, being expressed as a percentage.
We can obtain int-erxqu'sgvith any desired degree of confidence, Thus,
since R\
O P(—258 <y < 258) = .99 (8)
a 99 per cent\tonfidence interval for the true mean is obtuined by

#

converting’ ﬁie inequalities as before and substituting # = 2.7 to get
Nl Pe(—1.17 < 4 < 6.67) = .00 (9)
k[: if to be observed that there are, in fact, many possible intervals
\‘"\gith the same fiducial probahility, Thus, for example, since
P(—1.68 < y < 2.70) = .95 (10)
another 95 per cent confidence interval for g is given by
Pr(~135 < p < 5.22) = .05 (1)

This inferval is inferior to the one obtained before because its length

6.57 is greater than the length 5.88 of the interval in (7); it gives lest

precise information about the location of g, Anynumbers ¢ and b such
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CONFIDENCE INTHRVALS g§11.1

that ordinates at those points include 95 per cent of the area under F6))
will detezrmine a 95 per cont confidence intérval, Ordinarily one would
want the confidence interval to be ag short as possible, and it is made
so by making @ apd b as closc together as possible, because the relation
Pla <y < t) = 95 gives rise to a confidence intérval of length
(¢/+/0)(b — a). The distance b — ¢ will be minimized for fixed ares
when f(a} = f(b), 23 is evident on rcferring to F ig. 45. If the point b
is moved a short distance to the left, the point & will need to be moved
a losser distance to the left in order to. keep the area the same: thig®
operation’ dccreases the length of the interval and will continue ta do

50 as long s f(b) < f(a). Since f(y) is symmetric about, ¥ = Girithe

present example, the minimum value of b — ¢ for fixed area”oceurs

)

#y) R&4

L ¥ v
L Hi1a. 45,
. o)
when b = —g. Thus ('&l\gives the shortest 95 per cent confidence

inferval, and (9} gives(the shortest 99 per cent confidence interval for
M. A/
The general __meitliod illustrated here is as follows: One finds, if
possible, a funftion of the sample observations and the parameter to
be estimatef\Ithe function y above) which hes a distribution inde-
pendent gfthe parameter and any other parameters. Then any prob-
abilify, (skatement of the form P(o <y <b) =1, where y is the
f‘métic;h, will give rige to a fiducial statement about the pm.'ameter,
This teohhique is applicable in many important problems, but in many
obhers it is not, because it is impessible to find fynctions of t-he.desuﬂed
form which ave distributed independently, of any parameters.  These
latter problems can be dealt with by a more gencral technique to be
described in Sec. 5. .
The idea of interval estimation can be extended to include simul-
“taneous estimation of scveral parameters. Thus the two para,n}eters
of the normal distribution may be estimated by some plane region £
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§11.2 INTERVAL ESTIMATION

in the so-called parameter space, the space of all possible combinationg
of values of x and ¢2 A 95 per cent confidence region is a region
constructible from the sample such that if samples were repeatedly
drawn and s region constructed for cach sample, 95 Yer cenb of those
regions on the average would include the true paraméfer print (ug, af).
Confidence intervals and regions provide good illustrations of uneer-
tain inferences. In (7) the inference is made that the infarval —0.24
to 5.64 covers the true parameter value, but that statement is nghumade
categorically. A measure, .05, of the uncertainty of the inferehde is an
essential part of the statement. ()

0-2

PAN F1a. 48.
/vﬂ'X{/ 11.2. Conﬁdence\Iétérvals for the Mean of a Normal Distribution.
_~~" The method used(ih the preceding section cannot ordinarily be used to
estimate the wiean of a normal population, beeause the variance o
is not ordinatily known. The function y takes the form (for samples

of size n{"\"’
"'.\ y':.x-—“ ‘(1}
AL ) o/n

\'Qéd on converting the inequalities in, say,

P(—1.96 <y < 1.96) = .05 @2
one finds
P(2-196-2. < p <2+ 106 —‘T_) = 05 3)
( va o ESE + A7 (

For a given sample, 7 and n are known, but « is not, so that limits for #
cannot be computed. Of course, an estimate ¢ could be substituted
for ¢, but then the probability statement would no longer be exact
and might be very far wrong for small samples.
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CONFIDENCE INTERVALS 811.2

The way around this difficulty was shown by W. S. Gossett (who
wrote under the pseudonym of “Student”) in & classie paper which
introduced the ¢ distribution. Tle is regarded as the founder of the
modern theory of exact statistical inference. The quantity

P (& Hl ok

IR T A

involves only the parameter p and has the ¢ distribution with n — 1
degrees of frecdom which does not invelve any unknown parameters
It is therefore possible to find a number, say ¢4, such that N
O

Pl=tw <t <to) = [ f;n-Da=95 O 5

(8 4D

g

K
and then to convert theNinequalities to obtain

4+ <p<E+ t_md%] =95 (6)

in which th; ’h\hits can be computed for a given sample to cbtain a
95 per copliconfidence interval.

The.ml_f_ﬁb_el‘ L5 is called the 5 per cent lcvel of ¢ and Iocates points
“-'!T;Eﬁ'&?it off 2.5 per cent of the area under f(f) on each tail. Since

U X symmetric about { = 0, (6) gives the minimum 03 per cent
confidence interval. Other confidence intervals can be obtained by .. .-

Using other levels of & “THus a 99 per cont confidence may be found ...

%’X using the number 95, which cuts off area .005 on each tail of the ¢

F |:~’v_" — Loz

Mistribuiign—-— — _

_ Figure 48 shows the result of computing 80 per cent confidence

ntervals for 15 samples of size four actually drawn from s normal

Population with zero mean and unit variance. The intervals are
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£11.3 INTERVAL ESTIMATION

shown as horizontal lines above the u axis, and, as expected, abous
half of them cover the true mean zero.  Similarly if 95 per cent con-
fidence intervals were used, about 95 per cent of them would he
expected to cover the true mean. If one consistently nses 03 per cent
confidence intervals to estimate parameters and states eacl time that
the interval contains the true parameter value, he can expeet to be
wrong in & per cent of those statements.

O\
N ¢
O\
S
—_—_— « N\
N
'\'(.'
— LW
<
= AR\ i )7
Fio. 48,
fx N

PN 5 X
N’ Frg, 49.

i

."\'s.

123, \Q)ﬂﬁdence Intervals for the Variance of a Normal Distribu-
tion. wKor samples of sizo » from a normal population, the quantity

N
.

Y e — P2
Y xt = 2 B o

. o

where £ is the sample mean, has the chi-square distribution with n ~ 1
degrees of freedom. Hence a confidence interval with confidence

. coefficient y may be set up by finding two numbers, say « and b, such
that

Pa<x<t) = ("ot =y O
2286 '




CONFIDENCE REGION §11.4
On converring the inequalities, we obtain

i, o 52 S fa = .
P{Z(ﬁ-nb ) <l < Z(a; $)2:| =~y

2

3

which will determine a confidence interval for o2,
Sinee the length of the confidence interval is

(G-1)3 -2 .

the shortest confidence interval for a given sample would be obtained
by choosing a so as to minimize [(1/a) — (1/8)] for the chosenrvaiué of
v. Tho re r;u:red computation iz so tedious that it is rarely done in
practice, and tables giving the required levels have not hesn publlshed
The ordinary chi-square tables give numbers x2 buC}L bhat

Plx" > x2) = L Fodx? AN (5)
for seleeted values of e, In sctting up, Say, 7 95 per cent eonfidence
interval, one merely chooses a = x%; andb = x%,;, i.e., selects @ and
b so that avea 025 is cut off from eachl “ail of the dlbtrlblltl(}n This
very nearly minimizes the length of %he confidence interval unless the
number of degrecs of freedom 1s‘q11’1te small.

“-11.4, Cenfidence Region for Mean and Variance of a Normal Dis-
trlbutmn In mnqtructlng ) region for the joint estimation of the
mean wy and variance cr\})f a normal distribution, one might at first
sight be lnelined to yde the individual estimates given by the ¢ and the

x* distributions. X[hét is, for example, one might construct a .9025
(— 5% 1e010n %m Tig. 50 by using the two relations:

n

3z ~ I)* 2 — T2 _ 5 '
Lﬂg \'y 505\/?%(:; <po <E+ Lo —n(n =1y ] 95 (D
\ ™

P [.E_(x‘_—'_)_ <5 M] 05 (2)

X o2 Xlors

assuming that the probability of both occurrences is the produet of the

separate probabilitics. This is incorrect because ¢ and x? are not

independent-ly distributed, The joint probability that the two inter-

vals cover tho true parameter values is not equal to the product of the

Separate probabilities. Hence the probability that the rectangular

region of Fig, 50 covers the true parameber point (uo, i} is not .9025.
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§11.4 INTERVAL ESTIMATION

A confidence region may be set up, howevor, by using the distriby-
tions of Z and Z(x; — ), which arc independently distvibuted, I
for example, a 95 per cent confidence region 1s desired, we may find
numbers g, ¢/, and & such that

P(-—a <Zzm a) = /95 2 975 3)

O’o/'\/?z

P [(},’ < 2 — 2 < b | = /05 (4)
: 7 O
ot
p \:\’

/2()4,-—2)%2_975 . s..\

\2 (Xf‘“z)z/xz,ozs S
-~ Tl 532 ‘r": - — ,a.
¥l axr;-?} ax X+t g E,[(T’E’n—_f)-)-

g\ I'ia. 50.

The joint probabilit}\'\w

A NT — By, — )2
P[_“‘“"r Koo, qf < B =2 z;} 95 ()

O o/ vn a5

becauge of“{he independence of the distributions, The four incquali-
ties in g8\ dotermine o region in the parameter space which is easily
foungihy plotting its boundarics. One merely replaces the fnequality
s;gn% by equality signs and plots each of the four resulting relations
\%i‘Xfunctions of  and ¢2 in the parameter gpace. A region such as the
shaded area in Fig. 51 will result, A confidence region for {us, o)
would be obtained in exactly the same way ; the relations would be
plotted as functions of & instead of ¢2, and the parabola in Fig. 51
would become a pair of straight lines

ae
=+ —
VL

228
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A GENERAL METHOD FOR OBTAINING CONFIDENCE INTERVALS 3115

The region we have constructed does not have minimum area, but
it is eastly constructible from existing tables and will differ but Lttle
from the region of minimum area unless the sam ple size is small, The
minimura region is roughly elliptical in shape and difficult to construcs,

c? \ : /
’\o’z=2(x,-—x)/a
O\
A\
v o?=E(x; -J?) S
A
(X2 ay/n
N
K \ AL

Fig. 51. { ’t' '
11.5. A General Method for Obtajning Confidence Intervals. The
method used in the preceding sgetions for determining confidence
intervals and regions required that¥unetions of the sample and param-
eters be found which were (distributed independently of the param-
eters. It is possible to set up confidence mtervalb, Lowever, whether
or not such funetions exish
Given a population'with density f(z; §) and an estimator f(zy, z,,
&) for samplesof size n {onc would ordinarily use the maximum-
likelihood esti m@':bﬂ we may determine the density, say g(f; 6}, of the
estimator, We/shall suppose, for definiteness, that a 95 per cent
confidence \mtorval is desired. If any arbitraly number, say 8, Is
substituted for 8 in g(é, 8, the distribution of § will be completely
Sp"a‘ f?—bgi and it will be possible to make probability statcments about
particular, we may find two numbers kb and As such that

P < hy) = [’“ glh; 9)db = .025 (0

P > ho) = ﬁ 7 g(8; ¢)db = .025 @)

The numbers &y and ky will depend, of course, on the number substi-

tuted for g ip g(#; 6). In fact, we may write k; and ke as functions of

02 ka(6) and Rs(8). The values of these functions for any value of 8
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§11.5 INTERVAL ESTIMATION
are determined by equations (1) and (2). Obviously
Plla(®) < § < ho(0)] = [ 5(8; )b = 05 (3)

The functions 2.(6) and h:(6) may be plotted against ¢ ax in Irig. 52.
A vertical line through any chosen value # of 4 will intersect the two
curves in points which, projected on the § axis, will give linidts between
which ¢ will fall with probability .95.

Having constructed the two curves § = 4,(8) and 4 - ol ), P8 RAY
construct a confidence interval for 6 as follows:  Draw o sapid of size
n and compute the value of the cstimator, say . A I;]_p\’r]‘mhuul line

3 /’?2(9} R & ’::": /ﬁl (ﬁ}
) ' SN

N\

e —— ,'_~_’___.____

AT
&

\x ™ Fia. 52,
through thexp\éiﬁt § on the § axis (Fig. 52} will intersoct the two curves
at points hich may be projected on the 8 axis and labeled 8, and
as in th':\ﬁgum. These two numbers define the confidence interval,
for 13‘"15' easily shown that

O Pulty < 6 < 63) = .95 (4)
Suppose that we were in fact sampling from a population that had
& as the value of 8. The probability that the estimate § will fal
between 51(0) and he(8) is .05. If the cstimate does fall between
these limits, then the horizontal lipe will cut the vertical line through
¢ at some point between the curves and the corresponding interval
(85, 8,) will cover #'. If the estimate does not fall between Ay (8) and
h2(8"), the horizontal line does not eut the vertical line bhetween the
curves and the corresponding interval {82, 61) does not cover 6. It
- 230



4 GENERAL METIOD FOR OBTAINING CONFIDENCE INTERVALS §11.6

follows, therefore, that the probability is exactly .95 that an interval
{82, 81) consiructed by this method will cover ¢. ~ And this statement
is true for any population value of g,

It ig'sometimes possible to determine the limits 8, and 8, for a given
estimate without actually finding the functions hi(8) and hs(6).
Referring to Fig, 52, the limits for ¢ are at points #; and 6, such that
hi(fy) = 0" and he(fs) = #. In terms of the definition of &: and ha,
we may say that 8y is the value of 0 for which '

“ o '
f_am g(8; 6)dé = 025 &>
o’\\\
and s iz Ui value of # for which A\ ¢
jg;‘fn g(é; 3)dé = -025 “'( ""«' (6)

. € )
1f the lefi-band sides of these two cquations ca,nﬁg\ given explicit
expressions in terms of 8, and if the equationsCah be solved for ¢
uniquely, then those roots are the 95 per cenj;:ﬁcaliﬁdence limits for 4.

If £1(8; and A«(®) are not monotonic funciﬁﬁiis of 8, the confidenco
interval moy In fact be a set of intervalg.y"Thus suppose the curves
of Fig. 52 bent down farther to the right so that the horizontal line at
6" eut. them again, for example, ab, pl’ﬁﬁt.s s and 8. Then the éonfi-
dence interval would actually gonsist of two intervals (6, 6,) and
(65, 8). The fiducial statement about § would then be of the form

~\
Pp(ﬂg <.\'k’91, or 93 < 8 < 34) = 95 (7)

However, in most situstions encountered in practice there will be a
single interval, ordibwill bo possible to select a single interval on the
basis of other évidence concerning the experiment which produced
the sample algervations.

The meﬂ;\% deseribed here for obtaining confidence intervals may
be ext-enﬂéd to the case of scveral parameters, but a geometrical
represdutation heconles impossible even for two paramoters. Supposc
& disyribution depends on two parameters 8, and 6;; we may find a
plane region R in the 1, §» plane such that

P(é, bin B) = [ [ g(dy 0s; 61, 0)d6: b = 95 ®)
: E

By considering all possible pairs of valucs of 61 and s, we can generate,

& four-dimensional region in the 8, 85, §1, 6z space which'is ana]og_ous

"o the two-dimensional region between the curves in Fig. 52, Now
231 '
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suppose a sample is drawn and Lhe cstimiates 8 and 8; caleulated. The
intersection of the two hyperplanes 6, = 6] and & = &, with the
four-dimensional region will determine a two-dimensions) region,
which, when projected on the 1, 82 plane, will be a 95 per cent confi-
dence region for #,, #s,

The argument may be extended to covoer the case of £ paramoters,
‘The method will determine a confidence region for all the I meeterb
of a distribution. If one wishes to estimate some hut not. o1l of g st
of parameters, the method can not be used in generul, though 1L thay be
modified to handle the problem in special eireumst: unegdy There
I8 as yet no general solution Lo the problem of setting uI\nfmﬁdenoe
regions for & part of & set of 2 parameters in a dlstulmirrm function
oxeept in the case of large samples. R

ustrative example: As a simple Hlustration, “qmm\a consider the
estimation of ¢ in

S =S —1) 0%k <a )
o v
%)
for samples of size one. If x is the obfser\»atlon the maximum-likeli-
hood egtimator is found to he ¢ = 2L by solving

a [aly
aLT e = “-‘>] =
&K & '—"*J-L“‘-xj z- .)_-(—-ll“‘-'--\‘"[l'-l.,"“
for . The dl,‘sfrlbutl(jﬂ\’f o’f the tat1m¢for 18 o 2 2 a

(&a)——(za—-a) 0<a <2 (10}

8o that 95 p@r\cent confidence intervals are obtained by determining
ha{e) an@“(a) 50 that
[ o ayia < 025 (11)

O
N

N\ ) . _L( }g(a aldd = 025 . (12)

The integrations are easily performed in this case and give, on solving
for £, and he,

h(@) = 2(1 — +/§75)a (13)
:'12((1) 2(1 - ‘\/_2'))(1' (14)

These plot ag straight lines, as in Fig. 53. For s given Ob*:E'l"VaLIOIl,
say & = 2, the estimate is & = 4 and the 95 pr'r cent conlidence mter-
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val is given by

2 2 '
Prl——m=<a<x —2__ V= 05
r (1 — 25 TS \/.9?5) 15
Actually, sinee

200 — &
iU =

o

i distributed independently of e, it was not necessary to use the gen-
eral method In this problem, We could have found a confidcneg
interval for o by getting .95 lmits for u and then converting “the

R

inequalitics to get a statement about . A\
. 12
P NSNS

I

Py
Aylx) = N
z 7 e
D
¢
SO
O\
{.x.z ~ » &€ &

{MS\ Fia. 53.
11.6. Confidence Tntérvals for the Parameter of a Binomial Dist.ri-
bution.  We shall aphly the general method deseribed in the preceding
section to a problémi4vhich requires its usc. If a sample, 21, @3, * + -,

e 18 drawn frgiﬁ & binomial population with . ;,,“"(1—#1'”x~ P otie

.{\"' faipy =pt=pr 2 =01 i Ut

the m'agi"zﬁumdikelihood estimator of p Is Pt i;r!?l - G-xy =
~\J .
LY x— 2 —prigie - -
) p~L > 2y

where y = 3z, can have the values 0, 1, 2, + + + , n. The density of
Pis . . .
. 7 n " . — p— — . . .
9 p) = (np) pr*(1 — ) n f=0,% , 1 (3
0 it s not possiblo to find s function of # and p which is distributed

independent]y of p. :
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Again we ghall suppose for definiteness that a 95 per cont confidence
interval is to be construeted, The first step is to determine the fune-
tions hi(p) and ka(p). For p = .4, for example, we would, in accord-
ance with the preceding seetion, scek a number 7(.4) sueh that

Plp < h(4)] = E (’;) (A By = 025 @

¥=0

However, in view of the discrcteness of the distribution, »h,dh the
sum must be an integer, and it will he impossible to malie the swn
cxactly 025 for every value of p. This need not w ou‘\ ) though.
We do not need a curve Ai(p) defined at cvery p. The wwl: points of
interest are those which correspond to the possihle ‘\,\ﬂlfi woad . 1t s,
in fact, possible to use the technique indicated by Bt lons (5.5) and
(5.6) of the preceding section, because an explcil expression for the
probabilities on the left of these equatlonals immediateiv ot hand.
Assuming we have an estimate "

Y -
¥y R {5)

the @5 per cent confidence upper~lun1t p1 may be determined by finding
the value of p for which A\

}gﬁ) (’j) pr(l — p)»v = 025 (6)

and the lower Ii.r\mt P+ 13 the value of p for which
O Y me(] — pyn—e = 5 7)
&F Zk (y) (1 — p) 025 (

If L}s zero, the lower limit is taken to be zero, and if & = #n, the upper
Simit is taken to be one.

For small values of n, equations (6) and (7) may be solved by trial
and error for the roots p; and ps, but, this computation rapidly hecomes
tedions with increasing n. A simple method of solution is provided
by Pearson’s tables of the incomplete beta function. The cumulative
form of the beta distribution is

(¢ + 8 -+ 1!

alf!
234
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and repeated integration by parts gives

Fla;a ) = — E (“ B f + 1) x*ﬁl — g)ertti=i L 1 (g)

i=4

It follows that partial binomial sums are gix}én by the table of F(x; «,
£). We may write equation (6) as

Eoy ' "
l (i) pl—p)rv=1~Fp;kyn—k—1) = .025 (10}

N s
=" 2\

. . N\ ©
and find ai once in the table the value of ¢ which corresponds to
F = 975 for the given values of kand n — & — 1, Simildrly, sinee

L k=1 “’j\i"
S (”’) Pl —pyv =1~ % (n) PRSP
TN 5 \¥ O
K2s)
we may {ind the lower confidence limit. by pp{:}iﬁg (7) in the form

z (;) (1l — pyrv = F(pj‘f'c.’; 1,n — k) = .025 (11)
P

a3

For values of » beyond the vange of the table, the normal approxi-
mation to the binomial distzibution may be used to obtain confidence
intervals for p, as is shownltw the following section.

11.7. Confidence Infervals for Large Samples. We have seen in
Chap. 10 that for ]argé “s:'lmples, the maximum-likelihood estimator 4
for a parameter g i}i.‘a“dnnsity F(z; 8) is approximately normally dis-
tributed about, 6 @nder rather general conditivns. When these con-
ditions ara sa\\&‘?ﬁed} it is possible to obtain approximate confidence
intervalg quiite easily, The large-sample variance of the estimator is,

fay, N
o~\'“.‘

V o —-L _ (1)

o) = T Tog f(a; 97007
and we have indiented that it is & function of # sinee it ordinarily v:rill
depend on g, For large samples, therefore, a confidence interval with

fiducial probability v may be determined by converting the inequali-
ties in

(&)
236
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where d, is chosen so that

dy !
/ e G_}“ dt = ¥
_dnr'\/Q'ﬂ‘

As an example, we may consider the binomial distribuiion with
parameter p; the varianee of 4 is

2y — PO~ p)
*(p) . ~ @
An approximate y confidence interval, for example, is phbyined by
converting the inequalities in O
i [_ffv <—LBF g,y @
Vol — p)/n &
to get \%;
» [zn;a +dy* = dy B F 4P gt )
2(n + dyY) N\ P

o p s+ d%«_lﬂ%ﬁﬁo T = 4-n’;’»j*-"-] —
& 2(’”’ + d"r')

These expressions for the limité:fna.y be simplified if we recall that in
deriving the large-sample distribution, we neglect cerlain {erms con-
taining the factor 1/ \/% Le., the asymptotic novmal distribution i
correct only to withinlgtror terms of size k/+/n.  We may therefore
neglect terms of tjl\ﬂs order in the limits in (5) without aflecting the
aceuracy of th_e' approximation. This means simply that we may omit
all the d,* in (B}% boecause they always oceur added to a term with factor
7 and will x@s"ﬁegligiblc, relative to n when n is large, to within the
degree p\‘(a.pproximation we are assuming.  Thus (5) may be rewrltten
ag &

~O° P[;a —d P TB) s a’.,,.‘/MJ =~y ()
Q " m

In particular,

. Al — H o) = .
P[P—1-96-\/£-n—p-l<p<ﬁ+1.961(an)":”.90

gives an approximate 9% per cent confidence inlerval for p for large
samples.
W_e may observe that (6) is just the expression that would have been
obtained had $ been substituted for p in ¢2(p). This substitution
236
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td

would imply that

_b-p

VI~ f)/n
is approximately normally distributed with zero mean and unit vari-
ance. It is, in fact, true in gencral that in the asymptotic normal
distribution of a maximum-likelihood estimator 4, the variance o6}
may he replaced by its estimator ¢2(4) without appreciably affecting
the accuracy of the approximation. We shall not prove this fact
but shall use it because it greatly simplifies the conversion of incqualic

ties in a probability statement to get confidence intervals. O\
For large samples, therefore, an approximate confidence iftgerval
with confidence coeflicient v iz given by ' A\
P — dyo(0) < ¢ < § + do(8)) = 4 '\\ {T)

when 4 is asymptotically normally distributed, andM(# in this expres-
sion is the maximum-likelihood estimate of the stafidard deviation of
o R

11.8. Confidence Regions for Large Samiples. When a distribution ..
involves several parameters (61, 85, + - - W6, we have seen in Chap. 10
that under rather general conditions,flte large-sample maximum-like-
lihood estimates, (6, 8y, - - -, By 8rc approximately normally dis-
tributed with means (8h, B, - ’-",'B;‘) and ecoefficicnts of the quad-
tatie form given by 8

T\
¢ 4N : . -, B
Hﬂ‘f'-:f(\{}l'. s 3:’:)” %\H—RE [az logf(x; Bi, 32, ' A):IH (1)
." I

a6; 00;

The coefficients wilhin general, be functions of the 6; as we have
indieated. O3 _

Now we h&@-\‘e\’f;écn that the quadratic form of a k-variate normal
distribution s the chi-square distribution with % degrees of freedom.
We m&y.ghﬁclude, therefore, that the quantity

) koK o
N\ u= 3y ¥ o, -, 00— 6:)(8; — 6;) (2)
i=15=1 .
is approximately distributed by the chj-squar.e distribution with k.
degrees of freedom for large samples. Here again, the accuracy of the
&bproximation is not impaired by substituting the estimates of the

B‘; fOI' the 9@_ in 0..“(91, SRR 89@)} tho quan[’,ity

v = Z3g¥(fy, by, - - -, O (8: — 6:)(6; — &) )
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is also approximately distributed by the chi-square Iaw with 4 degrees
of freedom.

The variate # enables us to set up a very simple conficlenee region
for the 8. If xf., is the 1 — v level of the chi-square distribution,
then

Pl <xt ) =x (4)
determines a confidence region in the parameter space.  1'he boundary
of the region is given by the equation O

226, - 00— 000 — 0 = xt, Oy ©)

N
which is the equation of an LlllpSOl(l in the (0, 65, 3 ) . ) space
with its center at (&, ., - , 8. "G
If one is interested in vstlmatmu only a part of w‘w of & parameters,
for example, the st (8, 85, + - -, ) wherdw\< i, wo {irsi find the
marginal distribution of the ma,\imum -likelihood mtimuium for this
set. If we let (a, 6) be indiecs which GO the vange [, Cee T,
then the cocficients ¢ of the quadimlv form of {he 111'JL‘—:.L1mple
normal distribution of é,, 45, - - . Bvare given hy
Hﬂll%

where the matrix |ow|| is obtiined by striking out the last & — r rows
and columns in [ Fhe 2 will, in general, be funetions of all &
of the original param@ters 4, s, - - -, G If woe substitute the f;
for the 6; in &%, We\‘\hall obtain the maximum-likelihood estimators
5 of the #*. Théquadratic form
R
Ny w= 223“°(§a ~ 8) (6 — )
&

is 3?133’\\'(1111&&13' distributed like chi square with » degrees of {reedom
Emd Wil serve to determine an ellipsoidal confidence region in the
19;, 6’2, =+ +, B, space for those purameters.

‘As an cxample of the estimation of more than one parameter, we
may consider the large-sample estimation of the mean and variance
of a normal population, Wo have secn in See. 10.9 that F and ¢? ate
approximately distributed with means g and o* and with coefficients
of the quadratic form

[
2 o

e, 9] = | ®
&
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If we substitute ¢ for o2 in (8), then the quadratic form becomes
n o _ (e
v=?($—p)2+%(d’2—az)? (7}

which is approximately distributed like chi square with two degrees
of freedom for large samples. In particular, let us suppose that we
have an actual sample of 100 observations (34,51, - - -, 22) with

E = %ggzxg =4
6% = MooZ(ti ~ B2 = 5

N

Z . p
) '\" Fie. 54.
sinee the 05 level of ¢hi square with two degrees of freedom is 5.99, a
95 per cent coufidencs Yogion for u and o? is determined by

Pgég@ci — 2+ 2(5 — B < 5.99)] = .95 )

The vahies «\;\f\;_~ and ¢? which satisfly the mequality in (8) arc the
points wifhin the ellipse

"\
DY 20(4 — ) + 2(5 ~ o*)* = 5.99

which'is plotted in Fig. 54, This is the 95 per cent confidence region
for the trug parameter point, say (us, ¢5). Before thoe sample was
drawn, the probabilily was about .95 that the region we were going to
¢onstruct would cover the true parameter point.

The large-sample confidence intervals and regions presented in this
3:11‘.:1 the preceding section have an optimum property which we shall
boInt out hut not prove. In the earlier sections of the chapter, we
were concernod with finding the shortest interval for a given fidueial
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probability, Thus the shortest 94 per cent interval for the mean of 5
nermal population when ¢ is known is given by

1.965 1.96¢
Pl —"——F= <u<Z ——— ] = .95
(a: VR # + \/ﬁ) 0

and the length of the interval is 2 X 1.960/+/7n, where # is the sample
size. Now lot us suppose that, instead of using ¥ = (1/4) 2z, to con-
struct the confidence interval, we used only one of the chsergations,
say the first. The esiimafor is simply X
¢\

ﬁ = I NS ©

o

and the confidence interval is given by N

P(i — 1960 < u < j 4+ 1.96a)% 05

which has length 2 X 1.960. This intervalds™z/n {imes as long as the
one obtained by using the sample mean a¥le estimator.

It is now evident that the length of & c’(hﬁdum:c interval for a param-
eter depends strongly on what fung:t’?ibri of the sample observations is
chosen as an estimator. ‘The opfimum property of the large-sample
intervals and regions hased on. Iljiﬁiimum-lik@lih(md estimalors Is this:

Large-sample confidence wérvals and regions based on mozimum-
lLikelihood estimators willPe, smaller on the average than intcrvals and
regions determined by 'q,nb other estimalors of the parameters.

This property of HN.\k\iihumJikelihood estimators is clogely related fo
the fact that they“are efficient, i.e., that they have smaller variance in
large sa.mples. {kn other estimators. By “other cstimators’ we mean
functionallyy different estimators; one would obtain essentially the
same cc{tf‘;}«i'ence regions by using cstimalors which were funetions of
the mgsimum-likclihood estimators, The phrase “on the average”
refergito the fact that confidence regions usually vary in size from
.&%rﬁp]e to sample (see Fig. 48), and for a given sample a region deber
N\mined by some other estimators may be smaller than the region
determined by the maximum-likelihood estimators. Bul for repﬂa-tfd
sampling, the average size of the regions determined by maximunr
likelihood estimators will be smaller than the average size of regions
determined by other estimators.

11.9. Problems
» 1. Find a 90 per cent confidence interval for the mean of a normal
distribution with » = 3, given the sample (2.3, —.2, —.4 —.9)-

What would be the confidence interval if ¢ were mmknown?
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» 2 Tho breaking strengths in pounds of five specimens of manills,
rope of diameter 3{¢ inch were found to be 560, 480, 540, 570, 540.
Estimale the mean breaking strength by u 05 per cent confidence
interval, assuming normality. Estimate the point at which only & per
cent of such speeimens would be expected to break.

*3. Relferring to Prob. 2, estimate o2 by a 90 per cent confidence
interval: also o,

4. Referring to Prob. 2, plot an 81 per cent eonfidence region for
the joint estimation of u and ¢2; for x and o.

5. I'ive samples were drawn from populations assumed tohe
normal and ussumed to have the same variance. The values of
st = Z(z; — &)? and »n, the sample size, werc g o

£
< 3

s:40 22 17 42 45 D
n: 6 4 3 7 8§ NS
Find 98 per cent confidence limits for the common warlanee.
- 6. The largest observation 2’ of a sample of #M¥om a rectangular
density f(z) = 1/0 (0 < « < ) has the dengifm>
fyn—1 . :..’
fy =" k<

*

Show that « = 2’/ is distributed Qi)i{j‘ependcntly of 8. Using u, find
the shortest confidence interval far ¢ for fiducial probability v,

7. Compute a 85 por ce teontidence interval for {he range of a
rectangular distribulion git#n the sample (2.6, 1.2, 4.3, 1.6), and given
that the lower limit of the range is zcro.

8, To test two pramising new lines of hybrid corn under normal
farming conditions, & goed company sclected eight farms at random n
Towa and planted-Beth lines in experimental plots on each farm. The
¥ialds (conve{t‘q “to bushels per acre) for the cight locations were:

e'A:86 87 56 903 8¢ 93 T5 79
Ao B:50 79 58 91 77 82 T4 66
Assum] 52: the two yiclds are jointly normally distributed, cstimate the
difference hetwoen the mean vields by a 95 per cent confidence interval.
(Refer 10 Prob. 22 of Chap. 10.)
9. Using the density

it -
f@) =5  0<z <9
for the largest of four observations from a rectangular population, set

Up a generyl system of 95 per cent confidence intervals for 8 by finding
. 241
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the functions A:1(8) and h:(0) and plotting these in the (4, ) plane.
Find the interval for the sample givea in Prob. 7. Why docs it differ
from the interval found in that problemn?

10. Referring to Prob. 9, plot the funetions 2.(8) and Aq(8) for
samples of size ecight. Then show in genera! that the lengihs of the
intervals decrease as the sample size n inereases.

11. The sample (2.3, 1.2, 0.9, 3.2) was deawn from o population
distrdbuted by flx) = ae™==, z > 0. TFind a 90 per ceut cnukﬁdenee
interval for a,

12. Referring to Prob. 11, find 90 per cont confidencs @ittrvals for
the mean and for the variance of the dis tribtionyMYhat s the
fiduecial probability that both these intervals cover Llrt True mean and
true variance, respectively? “~

+13. One head and two tails resulted when %\nm was Lossed three
times. Find a 90 per cent confidence interddi¥or the peobability of &
head. o\

. 14, 160 heads and 240 tails resulted fwm 400 tosses of noeoin.  TFind
a 90 per cent confldence interval foihe probubility of & head. Find
a 99 per cent confidence interval, \ Doos this appear tu he a true coin?
. 16. A sample of 2000 voters Were asked their aftitude loward a
certain political proposal, ‘l?()(} favored the proposul; GO0 opposed
it; and 200 were undomded Assuming this wis a random sample
from a trinomial popul:\t‘lon construet a 95 per cent confidence region
for p1 and p,, thep npmtmm of individuals for and apganinst the pro-
posal.  (Use the Ig\ul‘rb of See. 10.9.)

16. Plot a 95, pér cont confidence region like that of Fig. 51 for the
example used\Y See. 8 and compare il with the region of Fig. 54.

17. Intcg}ate by parts [integrating {1 — £)* and differentiating 1’]

to ‘-sho\

N 1 e
AN — Dt = — POl o aeYebl L r—107 - fert gl
m;L\’( ) d s e 1./ut(] )
18. Apply the above result repeatedly to obiain a enmulalive form
for the beta distribution, Flz; a, 8).
19. Show that

4

atg+1
P@ia, 8) = ¥ ("‘ o ]) B =)o
fmati] 4

by using the result of Prob, 18. This is the form that would ha¥e
arisen had the integration by parts been done the other way—diffe”
entiating (1 — t)* and integrating #.
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- 20. Given u sample of size 100 from a normal population with
p =3, = .25, what is the maximum-likclihood estimate of the num-
ber e for which *

= 1
= ¢ WAt gy = 05
J. v

21. Find the large-sample distribution of g and ¢ for samplcs from a
normal population,  Sinee it 1s known that 4 and ¢ will be nmﬂmllv
and independently distributed with means p and o, it is only necessar_y
o find their variance.

22, Rpfe? ving Lo the above problem, find the large-sample dlStl’kju-
tion of & + 2¢ where k18 a given constant.  Use this to obtamﬁ g5-per
cent confidence interval for a in Prob, 20,

" 23. Develop & method for cstimating the ratio of the‘va,i'la.nces of

two normal populations by a confidence interval. \\
- 24, Develop a method for estimating the parameter’ of the Poisson

distribution by a confidence interval. (Refer to Ereb. 33 of Chap. 6.)
25. Work through the details of the derivatignof equation (2.6).
26. Whut is the probability that the length\t)f a { conlidenco interval

will be less than o for samples of size 20X

*27. Compuro the average length of &85 per cent confidence interval
for the mezn of a normal populatighibased on the ¢ distribution with
the length that the interval 11-'0111,‘&}h5\re were the variance Known.

- 28. Bhow {lat the Jength,&nd the variance of the length of the ¢
eonfidence interval approa,clg\zmo with increasing sample size.

29. How lsrge a samploniust be drawn from a normal population to
make the probability 295 that a 90 per cent conlidence interval (based
on £) for the mean, §ill have length less than /57

30, Show fhai«(};é lengih of the confidence interval for o (of a normal
pupulation) apiproaches zero with increasing sample size.

31. ( Ny Q‘m g truncafed normal population with density

PR Y Jlz) = — - — ¥ i{z—p) 2ot T < a

o = [ 4 1 tstomve gy

Cw N 2mwa

Show that ﬂ_ log f(z) and i log f(z) have zero expectations.
du

32. Roferring to Prob. 31 let g and ¢ be maximum-likelihood esti-
Mators of 4 and 7. Show that the matrix of coefficients of the quad-
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ratie form for the large-sample distribution of g and ¢ is

T n(l — b — by —ab(l + th + &)
_ ! ot
llosi| = . vy
—nb(1 4+ + ) a2 — th — £ - 1)
| = : o /

where b = of{a), and where ¢ = (a — u)/e. -
\;)\0
Oy
o

5y
<?>

244



-~

" CHAPTER 12
:/- .
TESTS ‘OF HYPOTHESES

12.1. Introduction. There are two major areas of statistical infer-'

ence—the estimation of parameters and the tosting of hypotheses, We
shall study the second of these two areas in this chapter. Our af
will be to duvelop general methods for testing hypotheses and to apply
those methods to some common problems. The methods will“he of
further use in later chapters. ~‘

Tn experimontal research, the object is sometimes mergh\r:t-b estimate
parameter.  Thus one may wish to estimate the yield%f & new hybrid

ling of corn.  But more often the ultimate purpose ‘Wil involve some .

use of the estimate. One may wish, for example,” to compare the
yvield of the new Tine with that of a standard lilﬁ and perhaps recom-
mend that the new ling replace the standard Bine if it appears supcrior,
This is a common situation in research, %Q1ne may wish to determine
whether a new method of sealing light, Bulbs will increase the life of the
bulbs, whether a new germicide is nigiré effective in freating a certain
infeetion than a standard germicidc, whether one method of preserving
foods i better than another {i'n,\so far as retention of vitamins ig con-
cerned, and so on, A\ :

Using the light-bully eXample as an Hlustration, let us suppose that
the average life of bulby made under a standard manufacturing pro-
cedure is 1400 hour,gf“ *Tt is desired to test a new procedure for manu-
facturing the bu&m The statistical model here is this: We are
dealin_g with \t%*d populations of light bulbs—those made by the
standsrd pr:a[je% and those made by the proposed process. We know
{from nufiarous past investigations) that the mean of the first popula-
tion i&\@l}o"ui-, 1400. The question is whether the mean of the second
Population is greater than or less than 1400.  To answer this question,

We seb up & null hypothesis, namely, the hypothesis that the two means
are the same.  On the basis of a sample from the second population .

e shall either accept or reject the null kypothesis. (Naturally we hope -

L}}flt_the new process is better and that the null Aypothesis will be’

rejected.) The reason for this roundabout way of doing things will

€C0Me apparent lyter.
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To test the null hypothesis, 2 number of bulbs arc made by the new |
process and their lives measured. Suppose the mean of this sample

‘of observations is 1550 hours. The indieation is that the new process
+is better, but suppose the estimate of the standard deviation of the

mean cr/—\/ﬁ is 125 (n being the sample size). Then a 95 per cent
confidence interval for the mean of the second population {assuming
normality) ig roughly 1300 to 1800 hours. The sumple mean 1550
could very easily have come from a population with mean 1400, We
have no strong grounds for rejecting the null hypothesis.  Ifzen the
other hand, ¢/+/n were 25, then we could very confidently, Iojeet the
null hypothesis and pronounce the proposed manuf: L(, mmg progess
to be superior. \.

The testing of hypotheses ig scen to be elosely rel: tzml 1o the problem
of cstimation. Tt will be instructive, however, U)\(lf velop the theory
of testing independently of the theory of estidiation, i least in the

‘heginning,

\/ 12.2. Test of a Hypothesis against axSl\rgle Alternative. In the

v’

example considercd above, there were: ﬁx}an_\_ alternatives to the null
hypothesis; the mcan of the sccond(population could have been any
positive number within a fauirlsr w dde 1 ange,  To introduce the basic
notions of testing hypotheses, *We shall consider the versy simple case
of one alternative. Suppose it 15 known that a population has either
the density fo(z) or the density f1(x), and suppose it 1= desired to test
on the basis of one obb}&rvatlon whether the true density s folz) of
Ju=z). Let us desig&é\i’e by

(H,: the hypothesis that f{z) = fo(z)
and by P\ %

«U\ the alternative hypothesis that f(z) = fu(z)

Wo %h\'m\cali H, the null hypothesis: rCJectlon of Hy will be equivalent
to acu‘ptance of I,

o test Hy, wo shall choose a namber .f1 (sce Fig. 55) and make ab
0135@1" ation z1. If 31 < A, we shall accept Hy; if o1 > A, we shall
reject .

yi‘hele arc two kinds of error possible in this test. We may reject

Hy when it is in fact true; ie., the population may haﬂ(‘ folw) as its
distribution cven though th( obselwd » did execed A, This s Callﬁ‘d
, the Type T error of the tost, and for the example of Fig. 55 its piobﬁ.bll .
ity is obviously

[ futrda
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This probability is offen called the significance level of the test.” A
second possible error is the acceptance of H,; whai ft3s falgerie., the
observation may be less than 4 cven though t the true populatlon dis-
trlbutlon is i1(x). This is called the Type 11 error of the test, and in
the example we are considering its pr obability is

f:: Hi(z)dx

The interval < A i8 called the acceptance region for the nuIl
hypothesis, and the interval @ > A is called the rejection region, or
more often the crifical region. The consiruction of a test is nothing
more than a matter of dividing the z axis into two regions, gng this

5(x)

Fie, 55,

may be done quite arbitrarily. We Iméht set up & tost as follows (see
Fig. 55): [\

Accept 11y ifa'< aors >b
Rege(t H@:{f a <z <h

This is clearly a poorer, tegt than the one degeribed first. We may
make the two tests comparable on one score by making the probabili-
ties of their Typ{, I €Prots the same, say .05; le, 4 may Le chosen so
that

§\ ]:4 Fola)dz = .05

and g a,ncjt E}:ehosen go that
w\: “\' . ﬁbfn(;z;)dx = 05

The supetiority of the first test is then apparent in the Type IT errors,

f_Am filz)da < fjw fl.(x)d:_t + Lw (e _

The second test is much more likely to accept Jo when it is false.

- Agood test is clearly one which makes the probabilities of both errors } —

s small g5 possible. However, it is impossible to reduce both errors

Slnmltaneously with a single observation. The common procedure is
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§12.2 TESTS OF HYPOTLESES

i to fix the Type I error arbitrarily (make it have probability .05, for-
¢ example) and then choose the critical region so as o minimize the’
probability of a Type IT error.  The quantity

1 — probability of a Type IT error

is called the power of Lhe test.  The power of the first test (bused on the
intervals ¢ < 4 and 2 > A} we have deseribed is

1 - f_“w ful@)de = f ® f)de N

In terms of this congept, the principle for setting up e 15%0 fix the
plobablhty of a Type Ierror and then choose & érit 1:, r.] J(unn 50 a3 to
maximize the power of the test. o\

" Returning to the example of I‘Ig 53, we can, m\s “ed s the best test
of the null hypothesis for given size of the 1% Rl crror. Suppose we
wish.the Type I error Lo have probablhl{\ 205, Our problem is to
divide the  axis into two regions (tw odntervals or two collections of
intervals), one of which will be the aeecplance region and the other
the critical region. We may coner‘ntraw on the eritical region, and
having selected it, the remamdér vof the axis will be the aceeptance.
region. The eritic. al region i tn,be such that the aven under fo(x) over
t_l:wtma[ region 15 .05, ands such that tho po“ er will ise maximized,

QY

i.e., such thaf the area ufider Filzy will be as lar e i poﬂT}lc over the
e 1cal region. Q K R i
Certainly the crlt\al region will include every = to the right of z = d,
the upper limit of tho range of fo{z). We can include still more of the
area under f; ()0 long as we do not make the aren under folz) excecd
05, The bbﬂf values of z to choose are obviously those for which -
Hiz) is aglalge as possible relative to fo(z).  We want 71(z) Lo be large
80 thaJ?'\he area under fi(z) will be large, and we want fu(z) to be small ;
80 that as much of the area under fi(z) can be included as possible
Without taking in more than .05 of the arca under fy(). The best
\cntlcal region is elearly the interval 2 > A where A is chosen so that’

f; Jo(@)dz = .05

Other hest tests would be determined by changing the specification

of the probability of the ‘Type I error. In the present illustration, for

example, the Type I error could be made zero, and Lhe best critieal

region would be = > d.  This is the test one would make i he were

particularly anxious to avoid rejecting Hoy when it was true, but w88
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L
not greatly concerficd about rcjedting Hy when it was true. To refer
hack to the light-bulb illustration, Hy may refer to the standard manu-
facturing process.  One would not want to g0 to the expense of chang-
ing the process unless he was rather eertain the new process was
superior. Of courso, such a decision as this would not ordinarily he
based on one obscrvation in practice,

The generul method of setting up eritical r'ns in the ease of one
alternative is quite simple. Seppose we are testing Hy against H, as
before. The incquality Q

(@)
fo(z)

" where & is an arbitrarily chosen number, will be satisﬁed.';b}; certain
values of . These values of z form a critical region for. 9best test, the
test for which the Type I error is given by integmfc«in?g\fu(:c) over the

>k AN
v\

_ Ai4) ‘O
F R e

the set of values &f & for which (1) is satisfied is just the set z > A. By
reducing %, we would get another 3:%t-~6f T values, x > A/, where A’
would be some number to the leftbof A, The test would be more
powerful (would have greater,probability of accepting H; when it was
true) busvould have larger frebability of & Type I error. By chang-

- ing k, the probability ef¢h.Type I error may be made to have any
desired value., A gen%}l criterion for constructing tests may be
stated thus: 79 : .

- To set up a best st for a given probability a of a Type I error, one
chooses as g cij-i@"g}af region the sel It of potnis x such that:

. & Fulz) > kol
there fﬂ.\t':s.'éelected 50 that:

.\

O JoFoaiz = a

This eriterion refers to a test for a single alternative H, and a single
observation. Tt is almost obvious that the given method of chaosing B
Will maximize the power of the test. A formal proof would go some-
what as follows: Congsider the possibility of replacing a small interval
Az about y point 2’ in & by an interval Az” about a point ' not in R.
(We may think of B as the interval z > 4 in Fig. 55.) Let the
length of Ay b so chosen that the probability of the Type I error is
249 :

-



§12.2 TESTS OF IYPOTITESES

unchanged by the replacement, i.e., so that approximutely
- folx'yAr” = fulayar!

The substifution will decrease the power by about fi(z)Ar" and
inerease it by about fi(x')Az". Sinee 2" is in R,

- }fl(&’.")i\.’b" > bfalat)ae’
and since '’/ is not in R,
Silz"ax" < Efalai A"

" - . N »
The right-hand sides of these lust two expressions ure nigialy howover;
henee O\

\

DA < fi(e)ax’ (’~}’"

and any such replacement would neeessarily l‘t‘t\[&l.(‘t‘ e power of the
test. 8

N

O

EAN a & b X
Tra. a6,

. ) ."s\ . )
To iltustrate the sethod further, we may consider the situation in
Fig. 66. A critical\egion for 4 — >4 is given by the interval

.,'\..3 a <z <h

The eorm%;%nding aceeptance region is. of course, the pair of inter-
vals :t:wQ&”a and z > . The tost has fairly high power in that fy will
of’geﬁ; be rejected when H, is true, but its Type I error is lurge. 1 We
‘”\Ql}p’osc a test with small probability, say .05, of u Tvpe I error, "E-he.n
\ the critical region would become o/ < 2 < b, and the null hypothess
would be accepted 95 per cent of the time when it was Lme.  Bub DO
the power of the test is small ; Ho will not often be rejected when b3
false, i.e., when H, is true. The power is, however, as Jarge as 1t .?an
be made for the given probability of a Type T error.  This situatio?
can be improved by taking more observations; we have been consider-
mg only tests baged upon & single observation.
When a test is to be based on a sample of several observations, the
construction is cssentially the same as that we have already examinet:
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Suppose a sample of two observations is to be used to test H, against
. The sample dengity is
J(w:)f ()

defined over the x1, #» plane. A test is defined by sclecting a critical
region K in the plane, accepting H, if the sample point (x4, x.) falls
outside R, and rejecting My if the sample point falls inside R. Here
aga}in ;-he best test is given by sclecting E to be the set of points (zy, 22)
aucn that

Jilza)f(x)
Fo(z1)folze) ' \\\

~

Fre, '5"3".
The pI'ObELbﬂity of a Type L\e:f-r\{)r ia
i}fﬂ(xl)fﬂ(xz)dxl dzs
R

A%/

and for that PYOb&fDiny the powel". of the test
A
\\w B [ffl(xl)fl(xz)dxl dzs

R\ B
is maximized.

The geteralization to samples of size # is immediate. The sample
U‘bSBI‘V&tions (21, x5, * * * , 2,) may be plotted as a point in an n-dimen-
sonal space. The space is divided into two regions—the critical
region £ and the acceptance region. If the sample point falls in £,
Ho is rejected ; otherwise II, is aceepted. The best critical region £
will consist of those points (#1, &2, * * *, #») in the n-dimensional
Space for which the likelihood ratio '

filz)filze) © - - files)
Fole)foles) Fola)
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exceeds some number &, and % is so chosen that the test has the desired
probability of 2 Type 1 error. This probability is, of course,

ff o ffc(m)fo(xz) © o Jolzn)deyday - - - day,
&

We shall not actually have to deal with n-dimensional spaces because
we shall be concerned with tests of parameter values and sueh tests
can often be based on the distribution of an estimator of tlic Darameter,

12.3. Tests for Several Alternative Hypotheses. A commeh prob-
lem in tesiing hypotheses is that of testing a particulak parameter
value, say 6, against a set of other values of ¢ for « i':plﬁl‘_&_-’ of distribu-
tions f(z; #). The basic ideas may be illustratedNy a partienlar
example. Suppose a population is known to hav@yt normal distribu-
tion with ¢* = 1, and suppose it is further kn(j\g,\n that the mean pis

flx; ) y \\

x\‘

,l{b\ A A - «
\\" T'e. 58,
greater than or équal to some given number po.  On the basis of an
observation Zpwe shall test the null hypothesis,
"\\ Her g = po &)
The gl&nativeg to this hypothesis are all the valucs g > o  On the
basigof an observation x, we shall aceept H, (state that u = o) OF
~réject H, (state that p > pg). We shall require a test for which the
\pi'obability of a Type I crror is, say, .05, )
If a particular value 4’ of 4 is considered, the best test of uo against
that value is given by choosing as a critical region the set of points for
which

Flx; 1) > kf(z; po) (2)
or, using the specific form of the distribution,
1 gz 5 ) 1_ P L (3
27 : 2ir
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After canceling 1/+/2r and taking logarithms, this mequa,hty may be
put in the form
2log k + 4" — p2

The best critical region is, therefore, an interval £ > 4, and 4 is to be
chosen so that

-

= 1
e HEw? g~ 05 (5)
L V2r ~
The value of 4 is determined from the normal tables to be

O\

= py + 1.65 O
in the present example. It was, of course, to be etptht:ﬂ tha,t the’
critical region would be of the form z > A.

An important thing to observe here is that th&“t}}ltl{,&l region is
independent of the selected value ¢/,  Any valualeP i greater than uo
would have given rise to exactly the same cnbcal region. For we
should have found that the best critical regz{m Was of the form z > A
regardless of the value given i/, and the detetmination of the value of A
depends only on g, and the selected prg’)ba"blhty of a Type I error.

We shall see later that this is nob.a general situation. It is not in
general true that the inequality

S > H(w; 0

will give rise to the e dritical region for all possible values of 8
alternative to g valud\@, specilied by a null hypothesis. When it is
true that all a]tcrthWes give rige to the same critical region, the test
ig called g uniformly most power, f.. We shall gee that uniformly LI
most pow: Brfdm%ﬁmportant problems in statistics,
while thereo{tfé ‘other equally important problems which do not have
uniformly\most powerful tests.

Gomm hack to the problem of testing wo against all g > g, let us

sider the power of the test for & particular value of p. The power

is the probability of rejecting Ho when it is false (when the true mean
8¢ > o) and is given by

]: \%ﬂ gty | E—»& J

- This quantity will elearly be a function of 4; it will be denoted by P(x) 3,—
‘lﬂd will be called the power function of the test. When the truc mean

I
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# is far to the right of u, the power will be nearly one, while when &
is near up, the power will be small; at ¢ = g, the power becomes equal
to the Type I error, the probability that & falls in the eritical region
when & = uo.  The funection is plotted in Fig. 59.

In view of the fact that the test we are considering is a uniformly
most powerful fest, we can make the following stntement about its
power function: the power function of any other test with the same
probability of a Type I crror will lie entirely below the eurve of Fig. 59
(except, of course, that it will have the same value at g, Tha general

Pl <O

0.05

= N #
™ Fre. 59.

problem of studying tgg’cs\can be set up in terins of the power function.

FFor one parameter wewtay consider the test of the null hypothesis:

~~2~. IIQ:B: eg

A% .
for the parzgmiet’er of a density f(x; f),-where the possible values of
lie in somg\nterval which may be finite or infinite. In g, 60 are
plut-ted\s\e\'éral power functions for fixed Type I error. If a test exists
whichobas a power funetion such as Py(#), then we have a very fine
fesindeed, and it can be shown that such tests can be obtained in

“genhoral for large samples. For small samples, power functions arc
more likely to look like P3(6) and P3(6). And generally speaking
there will be no absolute eriterion for choosing between tests. The
test ropresented by Py(6) is better than that represented by P3(6) for
9> foandfora < # < b. But the test represented by P3(8) is better
for# <gandb < ¢ < g,

The situation just described is typical. It will be possible to set up
tests which are hest for certain alternatives to I, but which are poor
for other alternatives, and other tests will be better for these other
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alternatives. The choice of a test must depend on the particular
problem at hand and on the end one is most anxious to gain by the
test. ‘Thus, for example, if one had to make & choice between the two
tests represented by Pao(6) and Py(8) in Fig, 60, ke would choose Py9)
it he wanied to be fairly certain to rejoct H, when 8 was quite far from
b, in either direction. But P3(8) would be chosen if he were particu-
larly concerned with the alternatives 8 > 4,

We may mention here that an wnbiased test iz one such that its,
power {unction has a minimum at & = 8. 'The test represented by
Py(6) is biased. There are values of # (just to the left of Bo) for
which the probability 1 — P(#) of accepting the null hypgthesié’ 18
larger than for the null hypothesis itseif. A

T
<

P6) IR
L0 }

o
T

. : \\ " Fre. 60,

\{.4. Simple and. édﬁiposite Hypothezes. We turn now to hypo-
theses involving.disfributions with several parameters, and we may
consider the géneral density f(z; f1, 82, * * * , &). The distribut-fon
may have seyetal variates T, ¥ % " . - without in any way changing
the ensuiﬁg" development. The parameter space with coordinates .
B, gy B3 , B, will be denoted by the Greck letter 2. A particular
distﬁ‘bu’tion in the family of distributions will be represented by a

Point in Q. Thug if numecrical values 6o, &2, * * - : o are 'Sllb?ti-
tuted for ¢, 6, « - - 8, in f(x; 0y, Gs, - * * , 6), & specific distribution
function is determined. The numerical values (81, fz0, = * * , Gs0)

may be thought of as the coordinates of & point in a A-dimensional
Space. Thus the family of normal distributions with

1
N X
256

Sz p, 68 = g—Yeliz—p /ol
» My



§12.4 TESTS OF HYPOTHESES

may be represented by the upper half plane of Fig. 61. The coord-

nates of any point in the plane determine a particular member of the
family. This upper half plane is @ for the given family,

J stmple null hypothesis is one which states that a distribution is one

sﬁ@:iﬁc member of a given family. A composite null hypothesis ig

one which states that a distribution belongs to some su hepace of the

rameter space, We shall be primarily interested in suhspaces of

(5.4

-5 -4 -3 2 0 ;..”."2 3 4 5 6 &
Fre. 61 4
lower dimensionality than that of £ Referring to the two-parameter
family of normal distributions,£He null hypothesis:

v =6, g =2

is a simple hypothesis Pegause it completely specifies a single distribu-
tion in the family. The null hypothesis:

7 Hyty = —5
i8 satisfied byﬁsill'distributions with mean — 5 regardless of the value of
o?; this @hypothesis selects a subspace (the line g = —5) of the
paramei€rspace and is & composite hypothesis. Similarly

e

h Y
4

\ 2
o) Hyip= =3 +5
is a compositc hypothesis satisfied by all distributions with parameter
valucs which satisfy the given relation.
Of course a simple hypothesis which selects & single point of t.he
wameter space may be regarded as a special case of a composite
ypothesis, because a point js a subspace; we shall use the word com-
pesgite only when the subspace has more than one point. The symbol
@ will be used to designate the subspace determined by the null
hypothesis whether it is simple or composite.
258



THE LIKELIHOOD-RATIO TEST §12.5

For a general family of distributions f(x; 8,, 8, - - , &), a null
hypothesis will statc that the actual distribution belangs to some sub-
space w of the complete paramcter space @ If w is a point, the
hypothesis 1s simple; otherwise the hypothesis is composite.

12:8. The Likelihood-ratio Test and Its Large-sample Distribution. -
There arc many ways to set up tests of hypotheses, and the best test
in any given situation depends on the form of the distribution function
and what alternatives arc considered to be of primary importance.
We shall not be able to study all the various methods of constructing,
tests but shall confine our attention to one method which ususlly leads
to a very good test. e )\

The likelihood-ratio test is closely related to maximum-liKalihood
estimation and to the ratio test described in See, 2 for a smglt; alterna-
tive. Lot @y, 29, + - -, Zn be a sample of size n from/a pdpulation
with density f(z; 61, 82, - -+, 8). On the basis of ~t§us sample it is
desired to test the null hy p{}th( SEN !

Ho: fix; 61, 85, + + -, #) belongs to the sﬁ%space wof O

.

The likelihood of the sample is :~ \/

H f(xn Blr"&’b H ) (1)

iml

N NS

The lilzelihood as a funetion gf\the parameters will ordinarily have a
maximum as the parame‘qm% are allowed to vary over the entire
parameter space @; we $hall denote this maximum value by L{d,, 8.,

, ) or more brleﬂy by L($). Inthe subspace w, L will also have
a maximum value whieh we shall denote by L{@). The likelihood ratio
is the quotient Qf\:th’ese two maxima and is denoted by

PR
N r =L@ @
K\ L(®)

"ﬁﬂmntltv is necessarily a positive fraction; L is positive because
lt Dproduct of density functions, and L(&) will be smaller than or at
most equal o L{&) because there is less freedom for maximizing Z in «
than in @, The ratio  is a funection of the sample obscrvations only;
1t does not involve any parameters. The range of the variate  is zero
to one, © { ’\-‘l

An ll]ustratlon will reveal the logic of using A as a test criterion.
Let the family of distributions be the one-parameter family of normal
distributions with unit variance, and let the sample consist of » obser-
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vations x1, o2, * * * , £,. We shall test the null hypothosis
Hyp =3

that the population mean is actually three. This point is « while the
whole p axis is @. The likelihood is

L = '_"l: i e‘_BﬁE(I.—_M)Q
v 2r

which may be written N\

. R
L= (LY msreem e )
\2r QO

The maximum value of this quantity in 92 is, of (:mn-sc’,‘;}:i’{rf‘n by putting
# = Z to obtain '

\

. '\\
i ) N
Since in this cxample « is a point (the warlMiypothesis is simple), there
is no opportunity to vary p and the lagpest value of £ in o is simply its

only value: R

"
SRR —

2,

The likelihood ratio is th({fl
\\ N = (-2

If Z happens to/be-quite near 3, then the sample 13 reasonably eon-
sistent with Ha;'ﬁﬁd A will be near one.  If £ is much greater than or
less tharn B,\‘tﬁe sample will not be consistent with H, and » will be
near zerga™’
Cle@g}y the proper critical region for festing H, is an interval
~O 0<a<d

4

where 4 is some number (less than one) chosen to give the desired
control of the Type I error.

This example illustrates the general situation, If the maximumn-
likelihood estimates fall in or near w, the sample will be considered
csmsiﬁstent with Hy and the ratio A will be near one. I the estimate
(63, 82, - - -, ) is distant from w, then the sample will not be in
accord with Hy and X will ordinarily be small. The critical region for
A will always be an interval of the form 0 < A < 4. The number 4

2568



TESTS ON THE MEAX OF A NORMAL POPULATION 812.6

will be determined by the distribution of A and the desired probabi]jty
of o Type Ierror. If that probability is to be .05, for example, and if
the density of N 18 ¢(\} when H ig true, then A is the number for which

ﬁ) 4 s = 05

In order Lo preseribe the critical region for A, it is neccssary to know
the disiribution of A when Hy is true. If Hy is g simple hypothesis
{er 18 o pomnt (fre, Gao, - -, o), for example], then there will be a
unique distribution determined for A, But if 1Ty is a composite, thefe
may or may not be a unique distribution for A, Tt iz quite pqu]\)lv
that the distribution of A may be different for different pardmieter
pointe in w, and in this case A will not be uniquely determingd. To
specify a lest, it 1s necossary to add {urther arbitrary (311.1,81 4 into the
method of constructing the test. We shall not ingéstigate these
problems; we mercly wish fo obgerve here that pfe dikclihood-ratio
method 2z fur as we have deseribed it does not al\ays lead to a unique
test.

Asis usually the case for large samples X &}ry satisfactory solution
to the problem of testing hypothescs 0}}1‘11.,5 when one is dealing with
large snmples. The solution is based.di‘a theorem which we shall not
be able to prove because of the adydnced character of its proof:

I a density function f(x; 61, s, N -, B¢) sotisfies conditions like those
énumr’ra ted in Sec 10, 8 'éf fhe dé‘mensimalﬁy of ﬂ is k, and if &he df.v,'men-

/

Since -—2 Iog ) incredsgs as A decleases and appr oa(,hu, mﬁmty as )\
approaches zero, theler ritical region for —2 log X is the right-hand tail
of the (hl-‘«(]!]"’“&’dlbtl’lbutli)n.; Therefore if we are dealing with a
large sampl giid wish to test a null hypothesis with probability .05
fora Type, Carror, for exdple, it is only necessary to compute —2 log
and compare it with the .05 level of chi square; if —2 Jog A exceeds the
chisadtre lov el, H, would be rejected; otherwise H, would be accepted.
~. g Tests on the Mean of a Normal Population. The foregoing
Ideas arc well illustrated by a very common prac stical problem—that
of tosting whether the mean of a normal population has a specified
- value, We shall suppose that we have a sample of n observations,

T, &y, + -, ., from a normal population with mean g and variance
0. We wish to test the null hypothesis:
Ho:p= pao L

where ; is a given number. The parameter space & is the half plane
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of Fig. 61. The subspace w characterized by the null hypothesis is the

vertical line g = p,.
We shgll test Hy by means of the likelihood ratio. The likelihood ig

) =¥l i) ol (2)

£ (-

We have already seen that the values of 4 and o2 which maximize L
in Qare

~
P S N \
b= i) Z e + ’.\:\’
1 A
2 = . — F32 \/
é nZ G A\
Substituting these values in 7, we have \: ‘
1 i\, }
Y — N\ 3
L{) [_'—"—”“_(%m)z(x‘- — ‘E)?‘L‘ e @3)

4
To maximize L in , we put u = o, a.nd.’t’l}c only remaining parameter
is ¢%; the value of #? which then maximizes L is readily found to be

BN N
7= 2 @~ e
which gives N ) _
L{s) ;..{§_____1 ]wrfﬂfﬂ) €y
.\'\\ 2r/m)Z(m; — ug)? '
The ratio of (4) to((8) is the likelihood ratio:
&
O | 2@ =z B
RO (

Our nex¢ Btep is to obtain the distribution of X under /7, and use that
distribbion to determine a number A so that the critical region
0\ < A will give the desired probability, .05, for example, of rejest-
ihg’ H, when it is true.

It bappens that the distribution of ) is easily obtained in this case.
The sum of squares in the denominator of (5) may be put in the form

Z{x; — pe)? = Z(z; — )2 + n(F — #o)®

80 that X may be written

_ 1 n’l (6)
A 1+ [0 — 1)/ (e - 5)2]]
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We may recall (Sec. 11.2) that the fraction in the denominator is just

tz
n—1

where ¢ has the ¢ distribution with # — 1 degrees of freedom when H,
is true. To obtain the distribution of A, we nced merely to transform
the { distribution by the substitution

1 il o N\ ’
v o

It is not necessary actually to obtain the distribution of A, lqeq'ah's}s
it is a monoltonic function of 2 and the test can be done just as’well
with ¢ as a criterion as with A. Since #2 = 0 when A £ Tand £
becomes infinite when X approaches zero, & eritical region ©f the form
0 <X < A is cquivalent to a critical region 2 > B3¥here B may he
determined from A by equation (7). The eriticalMvalues of ¢ are
therefore the extreme values either positive o megative, and a .05
eritical region for ¢ is the pair of Intervals

t< —tes  and IS fos

_ > 3

where {45 is the number for which ,.j'l

™

f f(t n = l)dt 025 (])
tos o \)
i n—1) reprcscnting\fbc ¢ distribution with » — 1 degrees of
freedom., The test of (H, may thercfore be performed as follows:
We compute the quantity

7 Vo — 1)(F — u) (9)

&
.\ vV 2z — I)?
If it lieg beﬁw’een — .5 and ¢.95, Ho is accepted; otherwise H is rejected.
It jgagt ‘ovth while to observe the connection between this test and the
conﬁaﬂnue interval estimate of the meap. Supposing the mean of
the population sampled to be u/, a 95 per cent confidence interval for
#" 18 just the set of values p for which i

gy < M = D) C-8 Ly, (10)
\/m
Hence the test of H, is equivalent to the following test: Censtruct

2 confidence interval for the population mean. If o lies in the con-
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fidence interval, accept fy; if 12y does not lie in the confidence interval,
reject I .

We may also observe that the theorem at the end of ihe preceding
section gives the correct distribution of » for lnrge sumples. Since

—2logx = nlog (I + Ft—_l) (11}
and since the serics expansion of log (1 + ) 1 ~
2 3 1 N
Iog(1+x)=x-ff’2-+%——‘£-+--- fm-—1<.;c\'l~<~f1 {(12)
we have ~\ Ny '
—2logh =" _p_ % B w8

n— 1 mn—172 " (n -*,"‘1.5‘33_ B

for any fixed value of £, however large, provided: is taken large enough
to make £2/(n — 1) less than one. Thg’\ﬁizst term of this series is

ﬂo."\‘ A Fet /(xR
¢ \J IF1a. 62,
k™ |
essentially £2, and th&others approach zevo as n becomoes large. Henee
for large n, —2,J&g/% is approximately #%.  Furthermore ! iz approxi-
mately normaﬂj& ‘distributed for large samples (Sce. 11.7) with 7810
mean andﬁﬁiﬁ’ variance if the true mean is py; hence £2 has approxi-
mately thelehi-square distribution with one degree of freedom. This
Is in ageard with the theorem, since @ is a plane and has & = 2 dimen-
sions, while o is 2 line and has # = 1 dimension. :
\Qhe-tailed Tests on the Mean. The test we have just constructed 18
called the two-tailed test of the mean, referving to the fact that the
critical region is composed of both extremes of the ¢ distribution. 7The
test iz not a uniformly most powerful test, and in fact there is 00
uniformly most powerful test for the given null hypothesis. If we
consider a single one of the alternatives t0 wo, p = w1, for example,
where 1 > po, the two ¢ distributions are represented in IMig. 62. T]%C
best critical region for t, given a .05 probability of a Type £ crror, 1
obviously the interval ¢ > t.10, which cuts off 5 per cent of the area
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aunder f(#; wa) on the right-hand tail. This will be the best critical
region for any value of u greater than uo.  The power Pi(z) of this test
is plotted in Fig. 63 together with the power Po(y) of the two-tailed
test. The onc-iailed test is certainly better than the fwo-tailed test
for alternatives g > po, and it iz & uniformly most powerful test for
those alternatives. Dut for alternatives u < g, the one-tailed test
is no good at all; the power (probability of rejeeting pq when g is the
true mean) approaches zero ag y moves away from yu, towards the left.

There are many practical situations in which the one-tailed tegt ¢
should be cmployed.  We may refer again to the light-bulb cxample
used curlier in which the standard manufacturing process produeced
bulbs witli 1 mean life of about 1400 hours. Any proposed new process

-

Pl |
| RY
1.0 i
\\
g “

) i'",\FIC\. 63,

k™ .
is of interest only if it Prghuces bulbs with a greater mean h_fe. One
would test the null h.x_;fpothesis @ = 1400, and use the one-tailefl test.
Certainly no har ?\;fould be done by accepting u = 1400 if in fact u
were less than 2400, because the proposed process would g plb’. be
abandoned inoéltfh’el' case. In other problems, the left-han c-ta_ﬂed
test might 1)}?; the appropriate test. For example, a new process might
be though ‘to reduce the mean production cost per unit; one would
test t\l{e‘:ﬂuﬂ hypothesis that the mean cost ¢ fol_' the new process was
equal to the mean cost 6 for the standard process against the alterna-
tives 6 < 0, If one were comparing two proposed processcs and
wanted to choose the better for further research and deveclopment,
then the fwo-tailed test would be appropriate. .
12.7. The Difference between Means of Two Normal Populations.
In many situations it is necessary to compare two means when neither
is known : in the preceding section we assumed one was known. 1f, for
example, one wished to compare two proposed new processes for manu-
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facturing light bulbs, he would have to base the comparison on esi-
mates of both process means. In comparing the yield of 4 new line
of hybrid ecorn with that of a standard line, one would also have to use
estimates of both mcean yields because it is impossible to state the mesn
yield of the standard line for the given weather conditions under which
the new line will be grown, It is nceessary to compsare the two lines
by planting them in the same scason and on the same soil type, and
thereby obtain estimates of the mean yiclds for both lines under sim-
ilar conditions. Of course the comparison is thus apeciulized o com-
plete comparison of the two lines would require tests over g period of
years oh a varlety of soil types. R\,

The general problem is this: We have two normal {phpulations—
one with variate #; which has mean u; and varianeg™ws, and one with
variate z; which has meun u+ and variance o2, .Q’n the basis of two

samples, one from each population, we wish to te".sgi\'-i' he null hypothesis:
rl

fHyip = #2’{.\\,

The parameter space Q here is f our—din}ehﬁ}ima.l; a Joint dizstribution of
71 and 2 is specified when values ar@\d&signed to the four guantities
(81, 12, 0%, ¢3}.  The subspace o is three-dimensional hecause values for
only three quantities (us, of, qﬁ‘):ﬁéed be specified in ovder Lo specify
completely the joint distribuﬁ-i'dri under the hypothesis thul gy = g

We shall suppose that there are m observations {Ze1, T1g, © - * , Tim)
in the sample from thelfirst population and n observations (2, s

-, ) from ths{v{co’nd. The likelihood is

O Tn f i\t 1oz —ur\ t
NP1\ SZ(EEY e S2(EEY)
L=l s 2,0 1 B, 1 (1
g’ :.\ 2r0] 2ral
and itg{maximum in 2 is readily seen to be
.«f;fﬁ) = __L e _n____ ne G—(mfzjg—-(nfﬁ) (2)
)

2 i’ (x1; — &,)2 2:ri {(Tg; — Fo)®
1 T

to u, of, and o}, it will be found that the estimate of 4 is given as the root

of a cubic equation and will be a very complex funetion of the observa-

tions. The resulting likelihood ratio X will therefore be a complicated

function, and to find its distribution would be a tedious task indeed.

No one has, in fact, worked out this distribution, and therc is not much
264
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incentive t0 do so beeause the distribution would very likely involve
the ratio of the two variances. If it did involve this ratio, then it
would be impossible to determine a critical region 0 < A < A4 for given
probability of a Type I crror, because the ratio of the population
variances is ordinarily unknown. A number of special devices can
be employed to circurmvent this difficulty, but we shall not pursue the
problem further because statisticians are not yet agreed on what is the
best procedure. Of course, for large samples this criterion may be
used.  The root of the cubic can be computed in any given instanceby ™
numerical methods, and X can then be caleulated. The qua:ﬂﬁ\ty
—2log » will have approximadtely the chi-square distribution w:@h one
degree of freedom., g M

When it can be assumed that the two populations have the same
variance, the problem becomes relatively simple. R He parameter
space is then three-dimensional with coordinates (M, #2, ¥}, while
w, for the null hypothesis p = u, has two cochilmates, ¢ and the
eommofi mean u. In € we find \\

. = N\

= fia = &g

42 = m}l— [E: (1 — 51)”+E($2: - Eg)* ]

50 that o
. () 72
Ly = .i77'3\+ n _ ] elontnr2 ()
2] 221 )2 + Sy — 22)Y
In o :
1 N8 mE, + nd
i+ o) = W

1

S
which gives
L) = |
— m+n I tnkns
[2 (y: R +2 (w2 — E2)* + (31 52)2]
4
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and finally
1 [m+trls
A= T o ®)
s (BB
E(Rfl-j - fl)z + 2;(3:23‘ - -'ﬁ'd)z

1+

This lust expression is very similar to the corresponding one ohtained
in the preceding scction, and it turns out that this test ean also be
performed in terms of a quantlity which has the ¢ distribu Lione, We
know that Z and Z, are independently normally distribglodN with
means gy and we and with variances o*/m and /. ienring to
Prob. 25 of Chap. 10, it is readily seen that u = 7, ESE normally
distributed with mean py — g and  variance nl 4 (1/n}).
Under the null hypothesis the mean of % will be zep he quantitios
Z(ri — Z1)%0? and Z(xy; — F.)%/0° are inclepend*(?n}tly disiributed by
chi-square laws with m — 1 and # — 1 degiaes” of freedom, respee-
tively; hence their sum, say », has the chissquarc distribution with
m + n — 2 degrecs of freedom. Since }m:(l;ér the nu!l hypothesis

A

s = R
o/ (ifm) + (1/7)

is normally distributed with zera mean and unit variance, the quantity

74\

L]

b,

i-:— .

NOIC
_ 0 Vo + ) (3 - 7). )
M2 — 20"+ 2@y — 2/ (m 4+ n — 2)
has the ¢ distfitition with m + n — 2 degrees of freedom.  The likeli-
hood rati{(i}s\“ :

A \\ 1 {melen) /2 _
R A= [ _ (T
U4 [8/tm + n — 2)]

P s

8.3{} g distrib?n is determined by the ¢ distribution. The test

&

3

would, of coursdiifc done in terms of ¢ rather than A, Possible 5 per
cent critical reg®ns for ¢ arc again £ < —t.10, £ > tag, OF 12 > Ly, and
the choice between these would depend on the problem at hand. _If:
for example, the first population referred to the yield of a variety of
corn in common use, while the second referred to the yield of a pro-
posed substitute, the eritical region would be # < ~f5,. If one were
comparing two proposed substitutes, the two-tailed test given by
> 14 would be used.
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We may observe here that it is possible to determine a confidence
interval for the difference g1 — ps of the population means by using the
t distribution. When the two means are different, the quantity

EE e

T e Vm £

is normally distributed with zero -iizm and unit variance so that
t = A . Q)

oA\
hag the 2 d’\ltion with m + n — 2 degrees of freedom. Sin:;e' t
does nol involve o but only the parameter 8 = 1 — p, a’chﬁdence
interval for ¢ can be obtained. Upper and lower limitsAor a 95 per
cent confidence interval, for example, would he obtaix[ﬁ& by solving
the equations \Y

i = +io :'\\:
for 0. \
12.8. Tests on the Variance of a Normal'Distribution. To test the
null hypothesis that the variance of a ‘no'igm“al population has a speci-

fied value o on the basis of a sample of gize n, we first maximize

1 »;fi"
L = ) g Y Zl a2 (1)
27q*
< )
in €, which has coordina’@(u, ¢%), and in w, which is the line ¢* = of.
The ratio of these maxina is readily found to be
\ ¥/

\ ¥ n/2
2 - E) i @)
O n
Where .\'\
' R . e
O w=3 (s = 2 3)
\O) ¢

Since % iy known to have the chi-square distribution with n — 1.
degrecs of freedom, the distribution of A could be found by transform-
g the chi-square distribution by (2). The test may, however, be
done using « as a eriterion. On plotting equation (2) (Tig. 64}, it is
seen that a eritical region for ) of the form ¢ <X < A corresponds
to the pair of intervals 0 < u < a and b < u < = for u, where a and

are such {hat the ordinates of (2) are equ
. 267
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It can be shown that the power of this Lest will be slightly improved
if in the criterion (2}, n is replaced by n — 1, ic,, if '

i (n—1I)/2
N o= ( ) phi{w-nt ) (4}

n—1

is used as the test criterion. We shall not prove this stalement; it i
an unimportant refinement unless # is small.  Tsing N, the criticsl
region for u would be determined@anumbers ¢ and b7, suy, such that
the ordinates of (4) were equal aT™®ose points.  Since the chi"%quare
distribution is not tabulated in suflicient detail 10 detertnine these
numbers, it is common practice to use x4y < % < y b tHe accept-

A
LOT

:..,‘\ Fig. G4,
ance region rathewthan ¢ < u < ¥, if, for cxample, the probability
of a Type T crrpis specified to be .05, FHere again there are some
situations inQOvhich one of the one-tailed tests, v < x%; or # > Ko
would be.p:rléerred over the two-tailed test, _
\/ Equg@f‘éf Two Variances. Given samples from each of two normal
populations with means and variances (zy, o2) and (12, v}), wo may test

:00\:0 .
<\3 ' Hy: o} = o
The likelihood ratio is found to be
. [ mi " j‘ {m+tn}s2
\ = 211'[2:(.’{,“1{ — Z)t + 2;(372?' — 52)2] (5)
IS | T|nid
I:ZTZ(I,]_.; — 21)2] [2#2(2’,‘% - 1_:2)2J

where the notation is the same ag that of the preceding section. This
268 '
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eriterion may be put in the form

" _1 ms2
s — (?T?, -+ n)(m%n)!2 (n -1 F
- gyt 2y 02 m— 1 (mtn) /2 (6)
1+ F
#—1

where I iz the varianee ratio:

= 1} 22y — 31)?
C(m o~ 1) 3y — T

F ()
which has the F distribution with m — 1 and n — 1 degrees of fresddm
when 77, is true.  On plotting ) as a function of F, it is apparéit that
the eritical region 0 < X < /4 corresponds Lo a two-t-aﬂeq‘ﬁe:st on F.
Tt is customary to make the two tails have equal areas (though this is
not quite the best test) because the tabulations of R ’m.hk\c this region
casy to defermine. Again one-tailed fests are ofttn”appropriate in
problems of this kind, N

Equality of Several Variances. A problem.fhit frequently arises in
applied statistics ts that of testing whether/several normal popula-
tions have the same variance. Lot 2, Tie, - * * , Zias be & sample of
gize n; from a normal population \\-’i!’;l“i mean g and variance of, and
let there he one such sample from, 8ach of 4 populations (i =1, 2,
©c k). It is easily found .thiit the likelihood ratio eriterion for

testing N
H, &\é’ag——"as— P o= g3
.IS ¢‘¢
s k .
AO [l (sy/mpmr
S = ]
’\\.. A (ZS-I/ 2;?’1‘) Enifl ( ‘?
where .\
e . il
mJ S‘: —_ E (Sﬂg‘j‘_fé)z

V =

Equation (8) iz the direct generali'zat-ion of (5). The distrib}ltiop (.)_f
Mg g gomplicated function, and from the applied point of view 11': is
of no uge because it would not be feasible to tabulate the function
anyway. 1t containg b parametcrs fy, g, © ° 7y T and would have
to be tabulated for all possible combinations of values of these puram-
eters for every value of k. When the #; are large, the griterion does
Provide a test because —2 log » will then have approximately the
: 269
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chi-square distribution with & — 1 degrees of frecdom under H,
The number of degrees of freedom is & — 1 because @ has 24 dimer-
stons [the jeint distribution of the wy; is specified when (g, po, ot
ok, 0f, o3, * * +, of) are specified), while o has & o] 1 dimensions
corresponding to the & means and the common varinnce.

It turns out that the test may be made even when the n; are not
large. The distribution of —2 log A has been investigated and found
to he well approximated by the chi-square distribution with & — 1
degrees of freedom in any case. The approximation iz cvdnSbebier
and the test somewhat improved if, instead of —2 log A 1&1{3 eriterion

—2 log N O

“= 1 /vl 1Ty ®
L4 g3 (3— - \_"‘> R
(b — 1) \ Loy ..{a\

is employed, where N represents the cxpréssian (8) with all the
replaced by n; — 1. The quantity —2 la@)X gives a slightly biased
test, and % has been defined so as to mélke (he test unbiased. The
critical region for the test is, of cous¥e)the richt-hand {uil of the chi-

square distribution; a (wo-tailed tpét. 18 never appropriate here,
12.9. The Goodness-of-fit 'Iféét. If & population hag the multi-

nomial density &Y

™
3

Eow

faspy = ez = 0, ;2 =1;3p:. =1 (1)

as would be the ca%¢\un sampling with replacement from a population

of individuals whieh could be classified into & classes, a common prob-

lem is that of 1'ééitfn§§ whether the probabilities have specificd numerieal

values. Thussthe result of casting a die may be classified into one of

six classé®y™ On the basis of a sample of observations, we may wish fo
test whe her the die is irue, e, whether

*
e

:'\...' plz}é 27:]-12:"-.‘6
N\ Let us suppose that n observations are drawn from a population
with distribution (1) and that the number of observations that fall

in the 7th class is n(Zn; = #). The likelihood of the sample is
L=Ilpp @

and we shall test the nyll hypothesis

Hy: = Pu
270
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where the pp: are given numbers. The parameter space @ has & — 1
dimensions (given & — 1 of the p;, the remaining one is determined by
¥p; = 1}, while w i3 a point. Tt is readily found that L is maximized
in 2 when )

5 T
=, @3
hence
1k
L& = —[[n I
) {
1
In & the maximum value of 7, is its only value \ ‘\
; \W/
Le) = [T o3 AN (B
1 \\
The likelihood ratio is : O
k ni
vew(Z) oY (6)

1

D\

and the eritical region is 0 < A < A4, where A i3 chosen to give the
desired probability of a Type I error. ¢ JFor small n, the distribution
of X may he taubulated direetly in &rd(,r to determine A; for large
values of n, we may use the fact that* —2 log A has apprommately the
chi-square distribution with > 1 deglees of freedom. The chi-
square approximation is qurprzbmgly good even if % is small provided
that £ > 2, \}

Another tost commonlly nsed for testing /7, was proposed (by Karl
Pearson) before ‘rhe general theory of Lesting hypotheses was devel-

oped. This test (thE,rlon 18 )
N/ —— 2 e
.\'\ o = Z (?‘L\ ﬂpnl) . (7)
R .

™
‘o

Whmh"ﬂii Llr‘go samples his ‘approximately (he chi-square distribution
with B 1 degrees of freedom when Ho is true.  The argument for
Using (7) as a criterion is briefly this: The .ipprommate large-sample
dlstrlbutlon of the g; = n/n (1 =1, 2, , & — 1) is normal and
s in fact

- BED PO Cam e [ R LEE )
By ey - gy = (2_?;)% /ﬁ‘_ ¢ )
T
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as follows from equation (10.9,18) on replacing & by & - [ We have
seen in Chap. 10 that the quadratic form of a multivariate normal dis-
tribution in & — 1 variates has the chi-square distribucion with & — 1
degrees of freedom; hence

E—1%k—1
5y, 1 )
v = Z 21: n (-p— + 'p_;.-.) (Br — pd (B — py) {0

has that distribution approximately for large samples, On summing
{9) with respeet to § and remembering that O

E=1 L\
m=1— ) p o
1
we find N
. NG
n{p: — pi)? <
p= N P TP L
; P 10
or \
A .*’._\\“
=Y (s — pdy)* (11)
Ny WY

which is the same as (7} if the e values of the e are py, But let us
suppose the true p; are py;, atdeust some of which are difforent from
P then N
G T npy)? (12)
&\J L P
has approximatelynthe chi-square distribution with expected value
k— 1. The quantity

AN _ N (v — npe)® 13
:»\:. u 2 it ( )

is easi}y%own to have an expecied value
‘ :..\’:.' 1 )
O~ Eu) = ZE [npu(l ~ pu) + #2(pu — pod)fl (14)
which is certainly larger than & — 1 for sufficiently large n, and in fach
is larger than k — 1 for any », because if E(u) is minimized with respect
to the po;, it is found that the minimum oeccurs when Py = P and is
therefore & — 1. The argument for using u as a test criterion is nOW
evident. Tf the true p; are py;, u will have the chi-square distribution
approximately, while if the true Pi are not pq, u will be distributed
with a larger mean value, and that mean value becomes infinite as #
272
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becomes large.  Hence it is reasonable to test H, by using % a3 a
eriterion anl the righi-hand tail of the distribution as the ecritical
region.

We have discussed Pearson’s chi-square eriterion because of ils
historieal intercst and because it is still commonly used to test H,.
It is, in fact, equivalenl to the likelihood-ratio test in large samples.
Perhapa the easiest way to show this is o write A In the form

!
A= Koot
where ' O\
_ n* an. '\
B fhgi ar ~\*

If the variates of (8) are changed from #: to %, the funcﬁion will be
unchanged exeept for the change in factor s®-D/2 sinée\z di; = dn..
It follows from See, 10,9 that Aan#y K approaches\(3). By using
Stirling’s formula (8ce, 2.3) for the factorials i}liﬁ‘; 1t can be shown
that K/a*=* just cancels the coefficient of the exponential in (8) to
within tering of order 1/+/n; hence —2 log Xis asymptotically equiva-
lent. to 2. R

12.10. Tests of Independence in Contingency Tables. A contin-
geney lable is multiple classification) :'. Thus in a public-opinion survey
the individuals interviewed magbe classified according to their atti-
tude on a political proposal andhaccording to sex, to obtain a table of
the form: \'\ -

N

X \ " Favor | Oppose | Undecided
Mon. 00| st | ams 243
1\-“0;;\@; F B [1): 442 362

This 1s R % 3 contingency lable. The individuals are classified by
two f"ihafia} one having two ecategories and the other three cate-
gories. ¥ The six distinet classifications are called cells. A three-way
contingency table would have been obtained had the individuals been
furt-ller classified according to a third criterion, say according to annual
lneome group.  If there were five incore groups st up (such as: under
$1000, $1000 to 83000, - . - ), the contingeney table would be called
82X 3 X 5 table and would have 30 cells into which & person might
be put. Tt is often quite convenient to think of the cells as cubes in a
bloek two ynits wide, three units long, and five units deep. If the
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individusls were still further classificd into cight geographicul Iocations;
one would have a four-way 2 X 3 X 5 X 8 contingeney table with
240 cells in a four-dimensional block with edges 2, 3, 5, and 8 unitg
long. The contingeney table provides a tcchmquv for quugatmg
suspected relationships. Thus one may suspect that men and women
will react differently to a certain politieul proposal, in which case he
would eonstruct such a table as the one above and test the null hypo-
thesis that their attitudes were independent of their sex.  To consider
another example, a geneticist may suspect that stLF:'.L-.ﬁ-".p'tibility\ to &
certain disease is heritable. ITe would elassify a sample ofghdividuals
according to (1) whether or not they ever had the dise A5 {2Y whether
or net their fathers had the disease, {3} whether or Mgt “Thedr mothers
had the disease. In the resulting 2 X 2 x 2 f(m‘m;;mr-v table he
would test the null hypothesis that rLJ,salfwahfm\ﬂ) wus independent
of (2) and (3). Again a medical researehS\gowker might suspeet &
certain environmental condition favored asgiven discase and classify
individuals according Lo (1) whether or {kot they ever had the disease,
{(2) whether or not they wore sulueet.w the condition.  An industrial
engineer would use a contingency, ble to discover whether or not
two kinds of defects in a manu[a,etmul produet were due Lo the same
underlylng cause or to (hffercnt auses. Tt is apparent that the tech-
nique can be a very useful too] in any field of research.

Two-way ContingencyFables. We shall suppose that » individuals
or items are classified\akcording to two criteria 1 and B, that there
are ¢ c]assiﬁca,tiorgs\ n Ae, -+ -, A, in 4 and s classifications By
Bs, -+, B, in,B}and that the number of individuals Lelonging to
A; and B; is #4% We have then an r X s contingeney table with ecll
frequencigg ﬁ},and 3ng = n. Asafurther notation we shall denote the

\O

2 8 1 i
.‘ Y I . B, ]33 PR | IR
0" - - ’
W\s g A - i
\ 3 1| T, R | Pag | o 0 R
Az | nay | e Hoay s oy
1 — 1
Ay | =y | az| Ran | - - o LET ( }
Ao | ot | Bye | By | - - ¢ | mg
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row totals by #: and the column totals by n,

=Yg ni= Y ng
J i
E Ry, = En,,- =n
7

i

Of course

We shall new set up a probability model for the problem with which
we wish to deal. The n individuals will be regarded as a sample of »
size » from & rultinomial population with probabilities p; (£ = 1,2,

‘v = 1,2, ¢+, 8. The probability distribution for a singls
observation is (Sec. 10.9) O
S, 2 @) = 188 2y =0,1; ) 2y P ¢
i L&KW

We wish to test the null hypothesis that the 4 and# classifications
are independent, i.e., that the probability an ing@&iﬂual falls in B; is
not affected by the A class to which the individfual happens to belong.
Using the symbolism of Chap. 2, we would wite

P(BJ|A) = P(B)  PEAIB) = P(4i)
or NN

P4y, B) ~SP(LIP(B)

If we denote the marginal pri@bf;bilities PAYbyp(E=1,2, -, ")
and the marginal pl‘obak@iﬁi’és P(B;) by g;, the null hypothcsis is
simply A

%

prﬁ‘ﬁzf’?“;—' pg; =120 =1 (3}

When the nr[l;i‘ii;,%othesis is not true, there is said to be inferaction
between the\‘l‘%{’i'critel‘ia of classification.

The cor;)riérlcte parameter space 2 for the digtribution (1) has rs — _1
dimepsigis (having spocified all but one of the py, the remaining one is

ﬁxe&bf z py = 1), while under Hy we have a parameter space » With
i . .
r~14 s — 1 dimensions. The likelihood for a sample of size » 18

L=z )
. ,jj
and its maximum in ¢ oecurs when
Tgs
pis = 75 _ (5)
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In w,
L= I} (pig)™ = (H PE) ([I a') (6)

and its maximum oceurs at
o= 4= m
The likelihood ratio is therefore |
(1) (Il ) S

- i

A= A
7" H n AN
% O

8)

\

The distribution of A under the null hypothesis i3 €6% unique because
the hypothesis is composite and the exact distribtitihn of » does involve
the unknown parameters p; and g;.  For larde ¥amples we do have s
test, however, because —2 log \ 1Is, in th&t‘ ease, approximately dis
tributed by the chi-square law with \*\ .

rs—l—(r+s—2)‘t=z(r~1)(8—1)

degrees of freedom, and on tjxe’:liasis of this distribution a unique
critical region for N may be dotermined.

In casting about for a_test which may be used when the sample is
not large, we may inquife how it is that a test eriterion comes to have
a unique distributjop{fr large samples when the disiribution actually
depends on unkngﬁ\x}parameters which may have any values in certain
ranges. ‘The answer is that the paramcters are not really unknown;
they can begfimated, and their estimates approach their true values
ag the salriplé size increases. In the limit as » becomes infinite the
param‘s‘{?e}s arcknown exactly, and it isat that point that the distributi‘oﬁ
of A 'gtc’\ﬁuaﬂy becomes unique. It is unique beeause a particular point
ioeals selected as the true parameter point, so that the n; are givend

<\ ynique distribution, and the distribution of A is then determined by
this distribution.

It would appear reasonable to employ a similar procedure to seb Up

a test for small samples, 1.0., to define a distribution for A by uSng_t'he

estimates for the unknowsn parameters. In the present-'problem, ?mﬂe

the cstimates of the p; and ¢; are given by (7), we might just substitute

those values in the distribution function of the n; and use that dist

- bution to obtain a distribution for . Fowever we should still be 10

trouble; the critical region would depend on the marginal totals %.
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and n,;; henee the probability of & Type I error would vary from sample
to sample for any fixed eritical region 0 < X < 4.

There is & way out of this difficulty which is well worth Investigation
because of its own interest and because the problem is important in
applied statistics. Let us denote the joint density of all the n; briefly
by f{n:), the marginal density of all the n; and n; by g(n:, n;), and the
vonditional deasity of the ny, given the marginal totals, by

- fy)
f(ﬂ€i|ni-: n_f) = g(”«: R ’R;‘)
Under the nuil hypothesis, this conditional distribution happens to‘he
independent of the unknown parameters (as we shall show presently),
the estimators #; /n and n;/% form a suffieient sct of statisties for the
piand ¢ This fact will enable us to construet s test. &
The joint density of the n,; is simply the mult-inomiaki’

f(?’l,?l,"’,ﬂrs) (9)
11, M1z ﬂ'l_h?u

in @, and in « {we are interested in the dlgirz»butlon of » under H,) this
bocomes

floenn, mag, - 0 - ,'nrs) (H i )(HQ ) (10)

K £
To obtain the desived congld’t-i}onal distribution, we must first find the
distribution of the ., aﬁagl\?'i_j, and this is accomplished by summing
(10} over ail sots of g such that

Znu—n, Em,—m ~oan

\

For fixed K{\I‘g’mal totals, only the factor 1/TIn;! in (10) is involved
in the sum, %0 we have in effect to sum that factor over all ny; subjeet
to (11} NThe desired sum is given by comparing the cocflicients of

H it i the expression
. L T IR % LR GOl S a0 i
o= (mt o At (12
On the right the coofficient of - is simply
_nt (13)
H !

{
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On the left there arc terms in a7 with coefficienis of the form
It
nal  n.l !

o . w

i

where n;; is the exponent of x; in the jth multinomial, In this expres
sion the ny; satisfy the conditions (UL the first condition is satished
in view of the multinomiul theorem (Meeo 2000, while the second is
satisfied because we require the power of o in these fermstobe .
The sum of all such coefficients (L1} mast equal (13 }jc\-.mqe we may

wrile N
L nl \ .
. == — . (”"«' (10}
ZH?WI ot nt o0
i i w7

This is precisely the sum we require, l}r‘n--\u“usv there s obviously one
and only onc coefficient of the form of %f.\)‘\:m the lett ol (12) for every
possible contingency table (1) with giyen muarginal woials.  The dis
tribution of the #; and =, ; 1%, ther;rfciré,

My Mo 3

g(”f-: f&__.') = (!L—H;‘{l)ﬁ‘“:f) Il H )(l] K ) (le

which shows incidenty, I}: that the ne are distributed independently

of the n;; thig is unexpacted because ;. auc .1, for example, have the

variate niin comnion, .

The conditio;;éa.ifdistribut-ion of the ny, given the marginal totals, B8
obtained by di¥iding (10) by (16) to obtain

92 . .y t
& ) o (e DIl ;Y (17)
s’iﬁnil’ Mg, - - - s Mg ML, o, =+ -, .'”"“J = ___?e' I”Hul

which, happily, does not involve the unknown paramcters and shows
Qha% the estimators arve sullicient.

To see how a test may be constructed, let us consider the general
situation in which g eriterion A for some test has a distribution w(}; ,'?}
which involves an unknown barameoter &, if ¢ has o sufficient esir
mator 6, then the Joint density of A and & may be written

2N, 85 8) = i(NB)on(é; 0) (18)

and the conditional density of A given # will not involve 4. Using the
a78
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conditional distribution, we may find a number 4 (§) for every 8 such
that .
4 i, :
L @ oubdn = 05

for example. In the X, § plane the curve » = A () together with the
line A = 0 will determine a region £.  The prohahility that a sample

é" r
| a
» \:\'
A £ '\. N
A=A (9) : . \ N/
I7] LN A
~\ w
will give rise to a pair of values (n, §) whieh' correspond to a point in
£ is exactiy .05 because R\ Y
Pl(\, 6) in R] = f_“’ jﬂ?ﬁ“‘%(x, 8; 0)dn b 19
=W[\“°‘ [ f A0 0,8 | vx(d; D)0
’i'm'_ @ |
[ oma(d; 81
N&T =05

Hence we m{m\ iést the hypothesis by using f in conjunciion with A
The criiics.«]bi_ﬁ”g:ion is & plane region instead of an interval 0 <M < 4;
it is SI-ICh:’;L region that whatever the unknown ‘-'3.11,1!':} of 0 may he, 'the
T)’E@:ﬁé&'mr has a specified probability. The test in any given situ-
&G'Qn‘:ifetunlly amounts to a conditional test; we ohserve 6' an.d test A
by an interval 0 < \ < A(8) using the conditional distribution of X
given 4. Tt is to be observed that this device eannot be cmployed
unless @ hag a suflicient estimator. )

The ahbove technique i3 obviously applcable when # i3 4 se? of
paramcters rather than a single parameter and has a set of sufficient
ostimators 8, In particular the technique may be eml?loyed to test
the eriterion (8) for the null hypothesis of a two-way contingency table.
One merely uses the conditional distribution (17} and determines an
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interval 0 < X < A(n.; n;) which has the desired probability of 4
Type 1 error for the observed marginal totals, .
In applications of this test one is confronted with a very tedioy

" computation in determining the distribution of X unless r, s, and the

ON

marginal totals are quite small. Tt ean be shown, however, that the
large-sample approximation may be used without uppreciable errgr
cxeept when both 7 and s equal two. In the lafi=r instance, othe
simplifying approximations have been developed izee, for example,
Fisher and Yates, “Tables for Statisticians and Diometricians”
Oliver & Boyd, Ltd., Edinburgh, 1938), hut we <holi not*ekplore the
problem that far. O\

If the distribution (17} is replaced by it mnij-iqﬁiziate normaf
approximation, it can be shown that the criterion 0

S D

u = Z [ny — (”tﬂ;’m)}g\\ (20)

n,-;r'z,j/n

if

has approximately the chi-square (li,sf;’?‘hﬁution with {r — 1} s — 1)
degrees of freedom and is a reasonable criterion [or tesiing Ho of (3).
This is the criterion first proposed ¥y Ivarl DPewr=un) for lesting the
bhypothesis, and it differs fro’mfl-—Z log A by termz of order 1/4/n.
The two eriteria are therefloressentially cquivalent unless n is small
The argument that u is a, )'giaéonable ariterion iz coiirely analogous to
that used to justify (7)%n the preecding section, .
Three-way C‘onfipge?my Tables. If the elements of u population can
be classified accbidifiy to three criteria 4, B, € with classifications
A =1,2, N, s, By (4=1,2 s, aud G E=12
- 33),'%2533131P13 of n individuals may be classificd in a three-way
81 X 82 X sycontingency table. We shall let p represent the probs-
bilitiesassociated with the individual cells, n; he the numbers of
sampld elements in the individual cells, and, as before, marginal totals
wilk be indicated by replacing the summed index by a dot; thus

st L2

Mg = i Rigi Aop = E z Teiin (21)
i A

¥
_Thcre are four hypotheses that may be tested in connection with
Fhls table. We may test whether all threo eriteria are mutuallf
independent, in which case the null hypothesis i _
Ve = Dogits (22)
or we may test whether any one of the three criteris is independent
250
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of the other two. Thus to test whether the B classification was
independent of 4 and €, we would set up the null hypothesis

Diik = Dty (23)

The prozedure for testing these hypotheses s entirely analogous to
that for the iwo-way tables. The likelihood of the sample is

L=1Ilps  Ypa=1 Yna=n (24)
ik ik 7k
In 2 the maximum of L oceurs when ~N
Tij
Pisk = jf—ﬁ K¢ (25)
50 that ‘ 1:\
ZCORP Y | F AN R
RY

To test (23), for example, we would make the subbtitition {23) in (24)
and maximize L with respeet to the pag; to find

Py Nk 4 .5

D = “,}E—L 4; ?’T;f 27

L@ = = (Hn) (M=) (28)

The likelihood ratio N is uitm by the quotient of (28) and (26), and in
large samples —2 log Px@b the chi-square distribution with

sioevs = 1 = [{ghss — 1) + 80 — 1] = (8185 — {2 — 1)

degrees of frecd 111.\ Again the large-sample distribution is quite ade-
quate for all practical purposes unless the test has only one degree of
frecdom. 4 4

12.11., ﬁotes and References. It is now apparent that the sampling
diStﬁibﬁf.ions based on norma! theory have an all-important role in
StS{is}-TcaI inference, both in estimation and in tests of hypotheses.
We shall cite here the classie references.

The chi-square distribution is due to Karl Pearson [1], who was the
first major contributor to the theory of statistics. Pearson published
nearly one hundred papers from about 1805 to 1935 which 1aid a firm
fO_undation for modern statistics. He formulated the basie prablems
and went far along the way to solving many of them. He is rightly
regarded as the founder of the seienee of statistical inference.

281
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We have already mentioned that W. 8. Clossef firs) snowed the way
to make an exach inference. Before his puper |2] was published, the
accepted method of making inferences wus (o substitute estimateg {op
parameters In population distributions,  CGiossol was (he second major
contributor to the field of statistics: he published about twenty papers
i this field between 1008 and 1931.

The F distribution was derived by R. AL Fisher 3], who also gave
the first mathematical derivation of the ¢ distribuition |1]; Gosset had
obtained it by heuristic methods,  Fisher 15 the rea! siant in develop-
ment of the theory of stafistics. TIlis firsf paper waz publshed o
1912, and his work continues unabated today, ;‘\[t}mu;;'I'Klbundreds of
scholars have contributed to the seicnee of sbatizties, thisdn&man mus
be credited with at least half the cssen tial and impo 3',[;{;7{ "dovelopments
as the theory now stands. A 3

The general theory of testing hypotheses, ue&®6¢ huve presented i,
is due to J. Neyman and B. 8. Pearson (hedion of Karl Pearson),
who published the theory in an importantsdies of joinl papers begin-
ning in 1928 [5]. Many carlior \\-'0.1:1‘\&3;3, particularly Fisher, had
carried this problem far, it one craeial wgredicnt of 1le theory (the
power of a fest) was missing until Neyman and Pearaon supplied it.

1. Karl Pearson: “On a eritgtion that a given system of deviations
from the probable in the case of a correlated svsiem of variahbles
is such that it cam reasonably be supposed 1o lLave arisen in
random sampling N "Philosophical Magazine, Vol. 30 (1900), p.
157, 2N

2. “Student” (W, 8. Gosset): “The probable crror of s mean,”
Biometrifig, Vol. 6 (1508}, p. 1.

3. R.ATF isher: “The frequency distribution of the values of the cor-
1‘91@%5;55}1 eoeflicient in samples from an indefinitoly laree popula-
Gan,” Biometrika, Vol 10 (1915), p. 307.

4. R\A. Fisher: “Applications of ‘Student's’ distribution,” Melron,

) Vol. 5, No. 3 (1923), p. 90.
\5. J.Neyman and E, Q. Pearson: “On the use and interpretation of cor-
tain test criteria for purposes of statistical infevence,”’ Biometrika,
Vol. 20A (1928), pp. 175 and 263,

12.12. Problems

* L. Given the sample (=0.2, —0.9, —0.6, 0.1) from a normal popu-
lation with unit variance, test whether the population mean 18 Zero
at the .05 level of significance (i.c., with probability .05 of & Type |
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error). Test whether the mean is zero at the .05 level relative to
alternatives p > 0. : _ ._

- 2. Given the sample (—-4.4, 4.0, 2.0, —4.8) from a normal popula-
tion with variance four and the sample (6.0, 1.0, 3.2, —0.4) from o
normal ponulation with variance five, test at the .01 level whether the
means arc ooual relative to alternatives for which the mean of the
fivet, population 18 smaller than the mean of the second.

/" - 8. A metalhurgist made four determinations of the melting point
| of manganese: 1269, 1271, 1263, 1265 degrees centigrade. Are theset
in aceord with the published value of 1260 at the D5level? (Assume
@()l'mulityf.} e

"4, How would one make a two-sided fest of o = pp for a grerrdal
population with known variance? Is this a uniformiy mogi-,'}g&ﬁ-'eﬁul
tesl? ' e \
© 8. Pl the power function for two-sided tests of ’thfe\hull hypoth-
esis ¢ = 0 for s normal distribution wilth kno®gi\Wwariance using
sample sizes 1, 4, 16, 64, (Use the standard deyiation ¢ as the unit of
measurerent on the g axis, and .05 probabilifgiéf Type 1 crror.)

6, What is the best critical region R ibghe samplo space (x1, To,

-, &, Tor testing the null hypothesis that the mean is po against
the alternative that the mean is gy foriasnormat population?

- 7. Referring to Prob. 6, Whai;}’w;:)“uld be the region for testing
between 1wo values of the varian®s, o2 and o27

8. Tn testing between two ¥alues, xo and gy, for the mean of anormal
population, show that thegrobabilities for both types of error can be
made arbitrarily small gy $iking a sufficiently large sample.

+9. A cigarelte manuwfacturer zent each - of two laboratories pre-
gumably identical sa‘rﬁﬁlcs of tobaceo. Hach made five determinations
of the nicotine, .Q}fent in milligrams as follows: (o) 24, 27, 26, 21, 24
and (h) 27, 28,98 31, 26. Were the two laboratories measuring the
same thing?\ {Assume normality and a common varianee.)

<10. Thedmetallurgist of Prob. 3, after assessing the magnitude of
the §ansus errors that might accrue in his experimental -technique,.
decid®d that his measurements should have a standard deviation of
about 2 degrees. Ave the data consistent with this supposttion af the
05 level? (Usc a one-sided test, o> 2.) '

11, Test the hypothesis that the two samples of Prob. 9 came from
Populations with the same variance at the .05 level. :

12, The power function for a test that the means of two normal
Populations are cqual depends on the values of the two means, g1 a_nd
us, and is thereforeq surface. But the numerical valuc of the function
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depends only on the difference # = pu; — iy, so that it cen he adequately
represented by a curve, say P(6). Plot P(f) when ~wmples of four
are drawn from one population with variance tw o, and =nmples of two
are drawn from another population with variance thros for tests af
the .01 level.
» 13. Given the samples (1.8, 2.9, 1.4, 1.1}, (5.0, 8.6, ¢.2), (3.3, —4.1,
0.8) from normal populations, test w h< ther the varianeos are equal at
the .05 level. )

14. Given a sample of size 100 with 7 = 2.7 and 2(r; — D)X 225,
test the null hypothesis: O\

Hyp =3 and o2 =28 A\

at the 01 level assuming the population is nqy; m‘&l"

15. Using the sample of Prob. 14, test thé\Iypothesis that u = o
at the .01 level. N\

16. Using the sample of Prob. 14, tmt at the .01 level whether the
95 per cent point « of the populatmn distribution is three relative fo
alternatives & < 3. The 95 per ('vnt point is the number « such that

f Ffz) dr= .95, where f(z) i Is 1:,}1@ population density; it is, of course,

& + 1.6458¢ in the prc&ent mstanoe where the distribution is assumed |
to be normal. .
17. Verify equationg” Z‘S 5) and (8.6)..
18. Verify equalion (8.8). -
19. Given theg sample of Prob. 14 together with a sample from a°
second normaJ\pru.la,tlon of size 80 with £ = 2.2 and =(x; — £)* =
320, test whepher the means are equal at the .05 level. (The required
root of $HE\tubic equation encountered here is 2.56.)
20. In. maklng two-sided tests of # = #), one does not ordinarily
merely reject 8, when the test eriterion falls in the eritical region; he
»ﬁsus,lly states that 6 < 8, or that ¢ > 8, depending on which is indi-
\Leited by the result of the test. In this situation there is a third error
possible: one may declare § < #, when in fact 8 > 6, or vice versa.
Plot the probability of such gross error as a function of (g — #o)/e
in ‘the situation described in Prob. 4 for samples of size four and for
probability .05 of a Type I error. .
+ 21, A sample of size n is drawn from each of k normal populations
with the same variance. Derive the likelihood-ratio criterion for te.s’ﬁxf
ing the hypothesis that the means are all zero. Show that eriterion
is a function of a ratio whieh has the ¥ distribution.
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22, Derive the likelihood-ratio criterion for testing whether the
correlation of & bivariate normal distribution is zero.

« 23, If &+, @y, * * *, Zn are observations from normal populations |
with known variances o, ¢}, + -+, ¢2, how would one test whether v
their means were all equal?

» 24. A newspaper in a certaln city observed that driving conditions
were much improved in the city because the number of fatal automobile
aecidents in the past year was 9, whereas the average number per year
over the past several years was 15, Is it possible that conditions were ~
about the same as before?  Assume number of accidents in a given
year has a Poisson distribution, oA
- 25. Rix 1-foot specimens of insulated wire were tested at high volthge
for weak spots in the insulation. The numbers of such wealk ’spots '
were found Lo be 2,0, 1,1, 3, 2. The manufacturer’s quz;li'j;‘gr standard
states that there are less than 120 such defects per 100 'fe?;t.\ Does the
batch from which these specimens were taken conformiNG the standard
at the .05 level of signifiecance? (Use the Poissqr\\distribution.)

- 26. A psychiatrist newly employed by a medical elinic remarked at
a stafl meeting Lthat about 40 per cent of all’ebvonic headache sufferers
were of the psychosomalic variety, His disbelieving eolleagues mixed
some pills of plain flour and water, g,lvln};}; them to all such patients
on the clinie’s rolls with the story that they were a new headache
remedy and asking for comments. *When the comments were all in,
they eould be fairly accurat(}g( classified as follows: (1) better than
aspirin, 8; (2) about the tedis aspirin, 3; (3) slower than aspirin, 1;
(4) not worth the pow de‘lx low them to he]l 29. While the doctors
were somowhat burpmgd by these results, they nevertheless accused
the psychintrist of Caggeration. Did they have good grounds?
< 27. Supply th,g }ietalls of the argument in the last paragraph of

a¢, 9,

128, A dle \:\%s cast 300 times with the followmg results:

\ @Ccurrencn .............. 12 3 4 5 6
Frequency. . cei..... 43 49 56 45 88 41

Are the data consistent at the 05 level Wlth the hypothesm that the die
ig frye?

* 29. Of 64 offspring of a certain cross between guinea:pigs, 34 were
ted, 10 were black, 20 were white. According to the genetic model
t'ﬂeSe numbers should be in the ratio 9:3:4. - the data consistent

with the model at the .05 Ievel‘?
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- «80. A prominent baschall player’s bulling average dropped from 313
in one year to .280 in the following year.  He wus at bat 374 times
during the first year and 268 times during the secomd.  Is the hypoth-
esis tenable at the .06 level that his hitting ability wus the same during
the two years?

31. Find the mean and variance of ny; in the condiricnal distributiog
(10.17).

32. Bhow that the expected value of u defined by (10.20) is afr -
(s — 1)/{n — 1) under the conditional distribution {10,177 QO

83. Using the data of Prob. 30, assume thut one has » spfhple of 37

from one bhinomial population and 268 from anotlice, \I)enm the X
criterion for testing whether the probubility of u hit ja4 BE same for the
two populations. Ilow does this test compare m’ch tHe ordinary test
for a 2 X 2 contingeney table? ™
¢ 34, The progeny of a certain mating worgbissifiod by a physieal
attribute into three groups, the numbers hwine 10, 33, 16, According
to a genetic model the frequencies ahouldﬁw in the ‘J.l-Jl_OS p2:2p(l —
2):1(1 — )% Ave the data consistentSith the meode! wi the .05 lovel?

- 36. A thousand individuals \\(—‘]("(ch‘n“-]'h(,f{ aecording Lo sex and
according to whether or not tho:} wore color-hlind as follows;

24 ‘ Alale | Temale
AN |
Nowmal .. T 514
Bolor-blind. ... ... 35 f

P\

Accordir;g\"t}"{he genetic model these numbers should have relative
frequej;@eé. given by

Vo

[

+ pg

DObS  holS
AR

whereg = 1 —-pis the proportion of defective genes in the population.
Are the data consistent with the model?
36. Treating the table of Prob. 35 asa 2 X 2 contingeney table, fost
the hypothesis that color blindness is intlependent of sex.
37. Gilby classified 1725 school children sccording Lo 1r1t<]11genccﬂnd
apparent family economic level. A condensed classification follo%e:
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2,

Dull TIntelligent | Very eapable
| .

Tovy well clothed. ..o 81 322 233
Well elothed ..o, 141 457 153
Poorly clothed. ..o 000, 127 153 48

Test for independence at the .01 level.
- 38, A scrum supposed to have some effect in preventing colds wat\
tested on 300 individualg, and their records for 1 year weve comparad

with the records of 500 untreated individuals s follows: R\,
No colds | OQne cold | More thangoos cold
Treated. ... ... ... 252 145 | 103
Cntreated. oo o oL 234 186 W 140
NS
- N

Test ab the .05 level whother the sets (O ‘ﬁrobabilities for the lwo
trinomial popalaiions may be regardgd’;asfﬂm same,

39. Derive the gencral N criteriom for testing for independence in
an v X & tabie when one set of*ﬁjah‘ginal iolalg {the row totals, for
example) are fixed in advancesg in Prob. 38.  1lach row is regarded as
a sample from an s-fold multinomial population with probabilitics py
such that E P = 1lor a‘l{‘k The hypothesis of independenee becomes:

7 \

Py = Py = Py =_y#y = prforullj. Howmany degrees of freedom
does —2 log » haga?

- 40. Accord,ﬁ?ﬁ%.\f}] the genctic model the proportion of individuals
having the,@n"’ blood types should be related by:

a3
NS

\’ 0: g
'“\‘3 N/ fx: pg + 2pg
N B:r + 2¢r
AB: 2pr

wWhere p + ¢ + r = 1. Given the sample: 0, 374; A, 436; B, 132; AB,
58; how would vou test the correctness of the model?

41, Given cell frequencies ner (¢ = 1,2, * + ~ ,i=12
h=1,2 ... , 8 in a three-way classification, derive the eriterion for
festing whether all three crileria of classification are independent.
How many dogrees of frecdom does —2 log M have?
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§12.12 TESTS OF HYPOTHESE:S

42, Galton investigated 78 families classifying children aecording to
whether or not they were light-eyed, whether or not they had a light.
eyed parent, whether or not they had a light-eyed grandparent. The
following 2 X 2 X 2 table resulted:

Grandparent
Light 1. Not
TParent, .
- N
Light Not ‘ Tight i _‘1\:\
N 1§ M
i (™
o |Light........... 1928 552 | 308 h o8
8| Not......... 303 395 N 3?@' Bt

Test fof complete independence at the .QNIevel. =t whether the
child classification is independent of the ckthel two elassifications at the
01 level. PN

43. Derive the M eriterion for Lestmg whether the 7 clussifieation is
independent of the j& clasmficatﬂon in g three-way contingeney table
when the marginal totals n,, Vare'ﬁwd in advance. The probabilities

gatisfy the relations E Pitn = for all 7, and the null hyporhesis is

ik " \
Pyr = Paji i\ = Py or simply Piie = e

How many degreedrof freedom does —2 log A have?

44. Derivepthé test for complete independence in the situation
deseribed igProb. 43. The null hypothesis 1s pin = pp.  How many
degrecs f,}reedom docs —2 log » have? How docs this test compat®
with tl-fa\,t for the case in which the n, are not fixed in advance?

4@” ‘Compute the exact distribution of A for a 2 X 2 contingency
“I}able with marginal totals 7y, = 4; ne. = 7; ny = G n. = 5. What
i¢ the exact probability that —2 log A {)‘(c{‘cds 3.84, the .08 level
of chi square for one degree of freedom?
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CHAPTER 13
PEGRESSION AND LINEAR HYPOTHESES

13.1. Fariilies of Populations. In this chapter we shall study o
special cazes of a situation which may be deseribed as follows: A
family of populations has a set of variates (which may be symbolized
by = whetl.or or not there is only one variate), a set of parameters é,
which are in gencral unknown, and a set of parameters g, gvf:’rich are.
usually cbscrvable and known for a given sample.  The pasdmeters ¢
may or mas uot be functions of the parametersz.  If thcy}al\'e functions
of z, the [iwietions will in general be unknown., Weshell consider the
problem f making inferences about the paramefers/# on the basis of
samples dimwn from populations with differénf”values of z. The
family of density functions may be represembed’by

HEHAINS

We shall sclect populations with kné'}irtf values of z and draw samples
from cach of these populations.. Thus we shall deal with collections
of samples:wy; (7 = 1, 2, - -’;{m) forz=z;25( =12 - ,n
forz =2y s am G —Q‘;.Q}, < -+, ) for 2 = 2m. We may, of
course, draw only one obgervation from each population, jn which case
the observations couldMbe represented by (o1, 21), (22, 22), -,
{@m, 2n). On the a:si\s of such coilections of ohscrvations on z and 2,
We May estimate dettain of the parameters § or test hypotheses about
the parametordg’

This genghal problem may be illustrated by considering the distribu-
tion of heighis of individuals. A person’s height may be expected to
bo refated 1o his Tather’s height 2 and his mother’s height 2/, Let us
assume that for parents with given heights, childrens’ adult heights will
be normally distributed with means x(Z, 2) and variances o2 inde-
pendent, of the #’s, Le., that heights z have densities

1_ (Ve z—pta )P {1}
£ 2ra
Here wo have s variate z, a pair of parameters z, z' which can be

observed, and a pair of unknown parameters x and 0% one of which is
289
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§13.1 REGRESSION AND LINEAR HYPOTHESESR

regarded as a function of the observable paramcters, By measuring
the heights of children and parents in several families with more tlmn
one child, we may, for example, test the hypothesis thot the funetion
form of u{z, 27} is

p=a-+ b+ (2)

where the @, b, ¢ are unknown constants.  If this Liypothiesis is accept-
able, we may further wish to estimate the unknown paraeters o, b, .

To congider another example, the velocity of an ubijeet falling from
rest in aiv may be expeeted to depend on the length of timdZNt hag
been falling, on its weight i, and on certain other parame li‘f\s specify-
g 1ts size and shape.  Aguin the disteibution {;f velowiNeg’might be
assumed to be normal with moan g and varisnce ¢ ]nztI af which may
be funetions of the observable parameters 2, w, gu® (O the basis of a
sample of observed velocities together with 1-}1"(‘,&&);-1‘(_‘.&4]_::0nr_hng values
of the ohscrvable parameters, one might,<fow/ovampic, iest cerlain
hypotheses about the forms of the unlxnu\n funetions w(¢, w, s} and
a*(t, w, ). ¢

These problems arve regression SR :oblems.  They are sometimes
referred to as prediction ptoblmm JThus in the first example, after
the parameters a, b, ¢, and o® argdgtimated, one mayv prediet with about
45 pt\r eent certainty that Lhru L,fu dren of & couple with given heights
2o, 2, would have hmghts bt}t\\ oen

a + bzy + ez —i"'lt\.giiu- and a + bz + ¢zl + 1.O6g

if the estimates we\\lnsed on alarge sample.  The acenracy of a pre-
diction depends) Lar gely ou the size of the predietion interval which in
the present heténece depends on the error variance ¢°. I the case of
a falling 1oy, the crror variance is so small under certuin conditions
that th@\*(\it}@if}f can be prodicted almost exactly (the length of 2
95 pencent prediction interval is small enough to be negligible for most
praotloal purposes). In the case of predicting heights of children, the

\ }gr(‘dlctlon interval would not he small relative Lo the mean a -+ b%
+ czh.

Regression problems occur in great varicty in sll sciences, both
natural and social. In fact, from one point of view the whole aim of
science in gencral is to pl(‘dl(,t {on the basis of past experimental W ork)
what will happen in a given cireumstance.

We shall be concerned with a special case of the general regression
problem which, however, has very wide applicution. We shall deal
with normal distributions in which the mean is & function of the
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SIMPLE LINEAR NORMAL REGRERBSION §13.2

ohservable parameters. The variance of the normal distribution will
be asgumerd to be independent of the obscrvable parameters. The
mean u(2), where z is the set of observable parameters, is called the
regression function; the function would represent a curve if #z ecnsisted
of one parsmeter, a surface if ¢ consisted of two paramcters, a hyper-
surface for more than two parameters.

13.2. Simple Linear Normal Regression. A variate z iz normally
distributed about a regression funetion which is linear in a single
observable parameter; the variance is independent of that parameter.
The density is

1 N
e 2 _ —( 17202 [5—(at@s) \ ¢
S @ B0t 2) = o= e )
We shall deal with the one-parameter family of normal diéﬁfﬁbubions
for which «, 8, o2 are fixed. The family is 1'eprescnted~iQiF ig. 65; for
any given vulue of z, @ is normally distributed with/mean « -+ g2
and varisnece o%, Y,

Fl) \ Nt

A Tia. 05.

’”\‘ w

W %hall consider first the estimation of a, 8, ¢% Let (3, 2),
t=1,2 -+ n, bea sample of z’s together with the corresponding
values of 2. Some of the 2; may be equal, as would be the case if
more than one z vahue were drawn from any specifie distribution. It
15 convenient to label the 2's differently cven when some of them are
the same. Tt is neeessary that therc be at least two different values
of ¢ however. Obviously one cannot expect to estimate « and 8
from g sample drawn from a single member of the family of distribu-

291



§13.2 REGRESSION AND LINEAR IIYPOTHESES

tions. The method of maximum likelihood will be employed to esti-
mate the parameters. The likelihood is

n
1
L = e g (20N [mi— (et B |2 g
iI;II Ve @
and its logarithm is
7 n 1 v .
log £ = — 5 log 2r — 5 log 62 — fP}_; e — (@ 4 822 ."\{3)
On putting the derivatives of this expression with res ‘f‘-f',fs:@‘{ a, B,
¢? equal to zero, we obtain the relations O
net = B(e — o — Bu)t 4N (4)
2 — a — Bz:) = 0 '»\\\’ (5)
22;‘(1‘«_‘ - o — 183‘) = {} i (b)

which must be solved for the unknown xa}amcters. The lasgt two
cquations are called the rormal equatialis Which determine rhe coeffi-
cients in a linear regression function.. :il'hey arc lincar in o and 8 and
thercfore readily solved. We shallJgt

TR 1
T =2 Wy ] = . 7
* n.z Vi ¢ n E % @

The solutions of (5), (o%q,}ld (7) may then be written
N

Ir

O g= 20— B -3
27T s ®
‘t\.": & = 7 — b’z (9)

Q" . 1 A
A 82 =) (i — & — fut (10)

whﬁi\cﬁ)éfre the required point estimators of the unknown parameters.
“Qa hotice that the solution could not be carried through if all the #
were equal because the denominator of (8) would vanish,
Distribution of the Estimators. Sinee ¢ and B are lirnar functions of
the 2; (which are normally distributed), it follows that & and § must
themselves have a bivariate normal distribution. One could specify
that distribution by simply finding the means, variances, and covari-
ance of the d and 3. We shall, however, find the distribution another
way. The main objective is to show that & and § are distributed
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SIMPLE LINEAR NORMAL REGRESSION §13.2

independently of 6%, and in doing this their distribution will fall out
incidentally.
We siiall evaluate the joint-moment gencrating function:

&d—a | B8, nat
21 e — =
m(81, 323 “-“3) = E(B “ i cr2)

) 1 G—a p—F nédt 1 o
[ ( 1)E;“:“Hrr+“ﬁ‘ﬁzuemwmw]¢n by
A

J = = \2mwe? A
¢\

for the three variates (@ — a)/o, (§ — 8)/0, and né%/a2. Fhe first
step in cvaluating the integral is to fransform the variabes.&; to

(11)

1 7.\
¥i = {(xy — o — fBa) .;\\\' (13)
this removes the factor /6" from the intcgran:d,!\mﬁ changes the expeo-
nent in the integrand of (12} to A
n n :’:’:
Y oeas — ¥ 2 i (14)
i=1 JorEl
where “.{:: " .
o= s:{(Ze/n) — zzg].fposz(z}- -2 _ s - biss 15
T )P
and e

o = §,(1 — 233)\&\583{?1(;;&,' 4 nz(ad; + eb) + b2 (16)
where the o and bt—.\‘aitli;é"(ieﬁned by (15) and §; is one or zero according
a% ¢ 13 or is not\éqnal to . We have then to evaluate an integral of
the form \Y

’\w . . o
, \\ PR _}_ o o BT Tatnys H i (17)
QN - - \2m
O
Wh'k;’}‘f:apart from a factor +/Jo7, is just the integral in equat.ion'(g.{i‘ll)
with the #'s put equal to zero. . The value of that integral is given in
(9.6.4), and it follows that

fa11i m(sn 8e, 33) — e}éﬂz‘m;cm ,\/l}-;] (18)

.

The algebraic reduction of (18) may be accomplished as follows:
Since

—

a + 2 =
203

it
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equation (16) may be written

g . i
g% = §;(1 — 235) + 24, [ bxb:‘E (7 — 2)% + :?ijl (19}
or
gl = 5,'?'(1 - 283) -+ 25, (dq;d._; -+ Hl) tQ{])
where
4= BT E
- /2(25 — 7 2 ‘”@1)

so that 2d; = 0 and 2d% = 1. 1t is not difficult 1o ver_‘ify%"ht}ﬁ that
O

lo¥| = (1 — 254)7? ) o {22)
N
and that the elements of the inverse of the matrix iLb{i'ﬂ wre
. 3 2-93 p ..l.;
i = I AN
7 I — 255 1 — 24, (ii‘&P n) ()

These last two relations enahle one to }111"(:}(18) in the form

J
1722 2N g ot Ste st ea)

sy, s, 83} = —?1"1_—286) D=y

(24
The form of the moment g‘éﬁ%}rating funetion (24) enables one to
draw several important cofidhusions. Remembering that s, is asso-
clated with (@ — a)/g, & With (8 — )/, 8 with né¢*/e?, we observe
1. That the pair of ¥a¥iates & and 3 are distributed independently of
4% because m(s, 82,,,&.3’):1'-4(:‘[-01‘5 into & function of s, alone and a function
of sy and s, aloge (ste Sec. 10.4),  We shall lct

N\ %
$

O misy sy, 85) = malsy, seymalsn) (25)

2. Th:ai\t-he functional form of my(s,, s3) ix that of the moment
generaling function for a bivariate normal distribution (Sece. 9.6);
hﬁ}é"& and § are jointly normally distributed with means e snd 8,
respectively, and variances and covariances

PR 26)
e nI{z — 2} (
2 - o? i 27)
78 E(zi — 2)2 (
—__ oz - (28)
cov (a, §) = SCRSY (
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SIMPLE LINHAR NORMAL REGRESSION §13.2
The inverse of the matrix of these varisnces and covariances is

| n/e? ni/gl
Hz,”cﬂ Ze}iot

(29)

which arc the coefficients of the quadratic form in the distribution of
(& — o) and B3 — 8. _

3. That & und § will be independently distributed if the 2; are chosen
g0 that £ = (.

4, That the quadratic form of the joint distribution of & and 5‘,\

Q= 61 (2 — @) + 222 — )G ~ 8) + X 233 — ﬁ)z] ,.\g;m

‘na\ the chi-square distribution with two degrees of freedom.\

That ma(ss) 18 the moment generating function fora ch1-bqume
dlstrlbutlon with n — 2 degrees of freedom, hence tha.t‘&é’"/ o? hag that
distribution (3ec. 10.3). "

Confidence Regions and Tests of Hypothests. IQ\mgrbssmn problems
the main inlerest iz usually in the regressw{gscooﬂicmntb a and 8.
Of course there is no trouble in estimating\gor in testing hypotheses
about o2, because the chi-square diqtributiurﬁ of 5 above provides con
fidence intervals and tests direetly. \

To obtain a confidence interval £0r @, we need only to observe that
the marginal distribution of @ W“normal with mean « and variance
given by (26); hence L

'i } -
CNE— a) [nZ&—2)°
® = " o2
. a _az-

L >

has a normal d1~st11“bu’r10n wilh zero mean and unit variance. Since u
and ng?/¢2 are, .Lga‘ependentlv distributed, it follows from Sec. 10.6 that
% \'\\ ” 1{:
) b= né/n =3
s J =
»™ 2)2(z — 2)°
9O s \/n(n (31)
(& ) 222(335 - — 331)2
has the ¢ distribution with n — 2 degrees of freedom. lSin.ce o i3 the
only unknown quantity in this expression, the inequalities in
P(—t <t<t)=1—c¢

may be converted to obtain a confidence interval with ﬁdut?ial .proha-
bility 1 — ¢ for a. The quantity ¢ also provides a test criterion for
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§13.2 REGRESSION AND LINEAR HYPOTHESES

testing hypotheses about « in just the same way it does for the mean
of a normal distribution (Sec. 12.6). Thus to test whether the regres-
sion line = « 4~ 8z passes through the orvigin in the x, z plane, we
should simply put @ = 0 in (31) and observe whetlier ¢} << £, if the
“level of signifieance is to be e.© One-tailed tests may 2lso be made,
Confidence intervals for 8 and tests on 8 may boe mude in & quite
gimilar way. It is readily scen that

(n — 2)2{e; — 2)2
2(.’1,'-; - & — 32)}

t= - ) 2
QY
also has the ¢ distribution with n — 2 degrees of freedom athinvolves
only the unknown parameter 8. To test, for examples~thether the
means of the family of normal distributions wnder cQ(.lsi{_\ferthion were
independent of the observable parameter, one 1\“0@1:1"'1“:1:- S =0m
(32) and observe whether | < £, where ¢ is the Chose significance
level, N4

For simultaneous cstimation of « and ;S‘,x J¥Gnay use tha fact that

7
W

: '_ Q x\ 3

F= né s (33)
whero @ is defined by (30), has_ t;‘HéLF distribution with 2 and n — 2
degrees of freedom (section 10:5), and involves only the unknown
parameters o and 8. The inequality in

ARIF<FY=1—¢

is readily seen to dcfﬁé an elliptieal confidenee region in the o, 8 plane
for ¢ and 8. Tesbest whether o and # had certain specified vulues a
and 8;, one vgoﬁl\d put « = «yand § = B, in (33) and abserve whether
or not, the.r@s}tfting value of F exceeded ¥..

All tho%étésts on  and 8 could have been obtained by the iikelihood-
ratio method.

Logs worth observing that the aceuracy of the estimation of e and §
depends on the choice of the z;. Thus the variance of & will be a8
small as possible when the # are chosen so that 2 = 0. For, since

3z — 2)? = Z2? + nzt

the least possible value for o,? (equation 26} is ¢2/n and occurs when

z2 = 0. KLvidenily the confidence interval for a will be shortest on the

average for given n when z —= 0. The variance of 3 (equation 27)

can evidently be made small by choosing widely separated values for
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PREDICTION §13.3

the 2. In fact, if 2 is the smallest practicable value of 2z and 2, is
the largest, then 8 will be best estimated when all the sempling is
done at those two values of 2. It often happens in practice, however,
that there iz some doubt about the linearity of the regression function
a + B2, and it is desired to test for linearity. In this case it is neces-
gary to have observations for more than two values of 2. A test for
linearity will be deseribed in See, 14,2,

13.3. Praniction. Let ns suppose that a linear regression function
# = a - Gz has boen cstimated by = & + 2 on the basis of 2
sample of % observations, Wo now wish to predict the valuc of x fory
some specified value of 2, say 2. Thus if z is son’s adult height and 2
is futher's height, a sample of ohscrvations will provide estimapes’s
and § for o linear regression funetion. A prospective father Uf;h\zight
zy may wish to prediet his son’s height. The predicted h@ight is, of
course, vy = & + 330. Or to consider a different problefity® Let z be
the demansd for some commodity, and let z be the \n’htilﬂ\ssale price of
the item #wo months earlicr, or the wholesale price.alNome ingredient
or part of the item two months earlier. It is dedifed to predict the
demand two months in advance of the presefit.” From past rccords
one may ¢oilect a set of pairs of obscrvationy’(z;, z;), where x; is the
demand st o given time and #; is the wholesale price two months pre-
vious to that time, and estimate coeffidients o and 8 of a lincar regres-
sion. If 2, is the present whoh-rsqlé’ﬁrice, then the predicted demand
iwo months hence is 20 = & +B820.

The worth of o predietion.depends on the magnitude of its possible
error, and we shall take ¢ cé@uﬁt of that error by obtaining a prediction
tnferval which is analogeus'to a confidence interval. The variate 2 i
a random variable wilh a normal distribution ha:.ring meal a + 820

“and variance o2 (Q'he predicted value o = & + fz) has two sources
of crror: in the-ifdt place & + B2, is merely an estimate of the mean
of x, and -i;heé’cmal value of x may, of course, deviate from its mean;
in the ses(}.ﬁd place the estimated mean is subject to the random
SﬁmRﬁHfbéfrors inherent in ¢ and 8. If e, 8, and ¢ were exactly known,
then\a 95 per cent prediction interval for © would simply be

a + 2z, — 1.96¢ to a + Bz + 1.96a

since the probability that z will fall within 1.96¢ of its mean is .95 for
a normal distribution. Since all these parameters except Z; are
unknown, we must attempt to set up an interval in terms of their

estimaies,
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§13.3 REGRESSION AND LINEAR HIYPOTHESES
The variate
u=x—d4— 53 (1)

is necessarily normally distributed since it is a lincar function of the
normal variales x, &, 3. The distribution of % iz therefore known
when ifs mean and varianec are given.  Since

E@)y=a+8a FE@)=a EF =

we have
E(u) =0 N
The variance of u is therefore O\
o2 = F(u?) % O
= Ex — & — Ba)? A\
= o} + o2® + Zot? + 22,F[(& ——\aJ(d )] {2

remembering that z is independent of & aiid & oo s ~imply o%, the

variance of the normal distribution, a@\}he other torms in (34) are
given by (26}, (27), (28), so that O

‘o

(1 ﬂ;) z —1— = 23r.§]
)_’

N

o2 = gt ]+

‘.

0-!! + + (2'3-___ ?:JIJQ:[

It

~$:\'} e —|— 1 (3[\ - E)E ’ 3
N K 1 + e — 2 @

A 95 per cenb prediction interval for u is just ~—1.96z, to 1.96s,, but
this still m\ro’lveﬁs one unknown parameter ¢ which appears in fw
We can €iminate o« by using the ¢ distribution. The variate %/ow 38
norma:ﬁw distributed with zero mean and unit variance and is distri+
bu\ed’ independently of né?/s2; hence
\‘"\ -4 ,
PR S (4)
Vnet/ (n — 2ot

has the £ distribution with n — 2 degrees of freedom and involves 20
unknown parameters. The inequalities in

Pl—t. <t <t)=1—¢

may be converted o determine a 100(1 — ) per cent prediction inter
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DISCRIMINATION S §13.4
val for z. The interval is given by

P@+8sn -4 <z <a+fo+ A

cton B[Pl - "

Several properties of the predietion interval should be observed:

1. The length of the interval is greater than 2t¢ on the average
regardless of how lurge a sample was used to estimate @ and 8. Thig\
is entively reasonable becanse we are predicting a single observation ¥
which ig normally distributed with standard deviation e. R\,

2. The average length of the prediction interval increades’ as 2
moves away from 2. If it is possible, the values 2; chosen forgbtaining
obgervations to estimate the parameters should be sgledtéd so as to
- have » mean value near z,. \

3. The relation (5) holds only for a single predietion based on the
estimates @, §, . One cannot use the estimg,ﬁeﬁ Tegression to make
several predictions and expeet (5) to remgintrie. The relation has
meaning only if «, 8, ¢ are recstimated egth™ime a prediction on = is
made.  The probability statemont takegaccount of sampling variation
in the estimates as well as in #, ands il "the original estimates are used
repeatedly (not allowed to vary)tha statcment cannot be effective.

It is casy to generalize the above technique to take account of pre-
dietion of the mean of & safaple of size m observed for z = z,. Let
T, 2, o, 20 boe a S%‘épfc of m observations at z, with mean #’.

i
=t

i

]
—
(]
R

where

The mean of
ON =3 — & — Bz
A%
1s zero, and ity yatiance «? is the same as (3) except that (n 4 1)/n is
replaced by Q@n} + (1/n). The variate
O\

o) Vo,

® a—

ot b= v ndif(n — 2}’

hasXhe ¢ distribution with n — 2 degrecs of freedom and involves no
unknown parameters ; hence it may be employed to construet a predic-
tion interval for z.

134, Discrimination. ‘The discrimination problem is an estimation
Problem and ig in o sense the reverse of the prediction problem. In
prediction one wishes $o predict x knowing 2o on the basis of estimaies
of a, B8, 0. Indiserimination one wishes to cstimate 2z, having observed
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z. The general class of biological assay problems arc of 1his character,
Thus, for example, the concentration of a certain viiumin may he
measured by observing the gain in weight of a weeli-0ldd chick when itg
diet i3 augmented by daily doses of the vitamin for sevaral duys. A
manufacturer of the vitamin might determine the sivergth of a new
bateh as follows: Lot z be the gain in weight and ot z be the con-
centration. Using material of known conceniration, ne would feed -
geveral chicks with different concentrations z; (4 = 1,2, - - -, n) and
observe their gaing in weight ;. At the same time ol chickswould
receive their vitaming from the bateh with unknown ecnsentrafion #,
and their gains in weight, say =} (f = 1, 2, <o rdCwould be
observed. Omn the basis of these data it is (learled Lr; \‘gumate the
parameter ze.

The gencral problem of classifieation is a disc mmmmun problem.
Anthropologists, for example, make measure 111(‘nt\1 un siutlz of known
age z, then estimate the age 2o of a skull of un Lt e with measure
ments z". Taxonomists use the tee hniqq@ Ao discrinuaate between
varieties of plants with quite similar apficarance.

Using the notation of the first paragraph and the madel of Sec 2, the

likelihood of the ¢bservations 'r,,;tjg, ooy agpand o, ab -0, kL8
1 mtn v’.’
= il *(Lf”azh"(m—u—ﬁ-.)-—(l/?:|-\.z - se-flag:® (1)
vVano .

and on diHerent-ia.ting{ﬂ}e logarithm of this expression with respect to
%, «, B, %0 in turn, 0e can readily determine the maxiraum-likelihood
estimates of thes¢'parameters; they are

NS — B — 2)
\3\_ E(zn — Z2 (2)
,\’§" & - x - 32 . (SJ

. i [Z (e — @ = B2 + ) (v — F)° ] &
\3 _E -2 (3)
2 =

B

1
£=—E$‘j 2:.—122} :b-”'f =~1— ;1,;
n # 1

Equations (2) and (3) arc the same as (2.8) and (2.0}; equation ®
gives the desired point estimate of z,.
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A confidence interval for #; is also easily set up. The quantity
v =3 — & — Bz (6)

is normally distributed sinee it is a linear function of normal variates;
its mean is zero, and its variance is

aa=62[1 ] @

" 2z

just-as was found in See. 3. The two sums in (4) both have chicsqhare
distmbutions when they are divided by 2, the first with » ~»2\and the
second with m — 1 degrees of freedom. The two chi\ squa,ros are
independent since they are functions of mdependent samples hence
their sum has the chi-square distribution with m —1—\:1‘ — 3 degrees of
freedom. furthermore the two ehi squares are obvmusly independent
of v. It foliows then that N

2%

R
_ AN S )
V(m + n)é% mnd 0 — 3)o?

has the ¢ distribution and will pro¥ide a confidence interval for z since
that is the only unknown paramieter which appears in (8).

We have zonsidered a vefyvmuch simplified discrimination problem,
but it is one which ocqui‘s.\frequently in practice. The more general
problem kas to do Wi%h\ﬁhe case in which each observation consists of
several componentsHxi, xz, -+ +, &) which have a multivariate
normal disilibutmn“mth means o + 12, as -+ 87, 0 7 v, o T Bz
Given e%hma,ﬁ’(ss“of the o’s and B's on the basis of a sample of obscrva-
tions (204 ) - ¢+, ), one wishes to estimate @ for an observation
(@15, Zan N ¢, 1h0).  We shall have to omit this problem because it is
very elimhersome o handle by clementary methods.

o~18.5. Maultiple Regression. We shall consider now a variate z

Bich is nor mally distr ibuted with variance o2 and with a mean of the
form ez; 4 aszs + * ¢+ -+ gz the ¢'s are observable parameters,
and we are concerned Wlth the other parameters (the o’s and ¢%). We
Tay wish to estimate the parameters or test certain hypotheses about
the parameters. The density for & sample of size 7 is

2r o :
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and the logarithm of the likelihood is

L=— % log o — %Z (xt- - Zapzm)g {2)

We shall let the indices 7 and j run from [ to n, and the indices p, ¢, 7,
and s run from 1 to £, On differentiating L with respect to a,, we find
that the &'s are determined by the following set of & normal equations

(there being an equation for each value of ¢): N
~ »& \\’
2‘&./ 3(;\' ('Iq - ;Eipzpi) = 0 :‘.§ \“, (3)
if we define a,, and y, by the rclations A0
'\'\.'
Opg = Z Epifagi 7

¥

o~ \,J
-l \
Yo = T2 *{)
2 e

the normal cguations may be \Xfl'it-"g,(azi

" Y

S"a:ﬁfrﬁp = Yy @)

A

Qo
The matrix of coeflicients(le, | may be inverted if its determinant does
not wvanish, and le%‘)%ig} a?* represent the elements of the inverse
matrix, the solutian of*(4) for the 4’s may be written

) S

A/ &, = E arey, {5)
(N E
as foHov‘\J’sihjf multiplying both sides of (4) by ¢« and suroming on §
(sco 8@,'?3‘ .2).  The maximum-likelihood estimator of o2 is

‘..\“.

\”\* ¢ = ?ILZ (;1?,: - Z&pzm)z ®

as follows from putting the derivative of L with respect to o2 equal t0
zero and substituting the &'s for the o's.

Distributions and Confidence Regions. Tn considering the distribu-
tion of the cstimators, we ohserve that the @, are not funclions of the
randem variables a; and that the v, are linear functions of normaﬂ_y
distributed variates and must therefore be normally distributed. We
may determine the distribution of Lhe &, by simply finding their means
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variances and covariances. The mean is

E(@,) = E (3 oy,

= Z ad E 2B (z;)
2 i
= EaWEzqua,z,;
] i T
= EZ aPq 4 0 "
e N\
= 2 Bp,a, & t\:\.
< AN
m— N/
= tp W\ (M
2
< 3
The covariance of &, and &, is ;O
\\
Y - \:Ms
E(g, — ap)(@g ~ ay) = E(@.q,) — Dpltg \4

= E (2 a}-"?‘zﬁﬂ:g) (E a_'?ﬂ'zsfx:ia\g_ a‘-'paq
T I \ W
= BY, (3 @e) (J00%s) Bwa) ~ e ®)
47 &

-

{
™

When ¢ » 3, Q

Elwmx) = (Eag};ﬁ) (Z vazy}')

where % and ¢ run from 1 t?v’g\,\and when ¢ = j,

\\0

E(x}) = (E auzuﬁ)z + o*

On substituting thest: values in (8) and making reductions similar to
those employed 40’ obtain (7), one finds

N
’f.“\\ El(@p — ap{dy — ag)] = a”? {9)

N
oyl

PheAndede. o : .
The Myetse of the matrix [ja7?] is lap./o’; hence the &'s have the

density
2

v — (/2% Zyapclds— op) (B —eag}
e (10}

o

It can also be shown that né ?/g* has the chi-square distribution with
"~ I degrees of freedom and further that né?/e? is distributed inde-
pendently of the &’s.  We shall omit the argument, which is somewhat
tomplicated but entirely analogous to that used in See. 2 to obtain
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i

the joint distribution of &, B3, and ¢? in the case & = 2. TFrom thase
facts it follows that any particular regression cocllicienl a, may be
estimated by a confidence interval using the ¢ distribution; @, — a,is
normally distributed with zero mean and variance ¢"¢?; henee

t = &y = {11

arrmug?i(n — k)

has the ¢ distribulion with n — & degrees of frecdum aiid involves no
unknown parameters except a,. A confidence rogion for theGahols
set of regression coeflivients, ey, we, - ¢ -, @, M u A~cimensional
space may he determined by the inequality in D

)D(F < ]‘11_3) = .8 (”"«:

where F1_z is the eriticul level for the ¥ d.'latribm«iﬁe*f’wi‘:h irandn —k
degrees of frecdom. 7The quadratic form i Je¥expoaent of (10) has
the chi-square distribution with & degrees ghfudedony and js distributed

independently of =é?/¢*; henee S
P 0= 0308 ) 6 — a) @

L e

oahed?
o\
3

has the F distribution with kfdﬁﬂ n — &k degrees of frecdom.

It may be instructive io.compare the results obiained thus far in
this section with thoseiﬁi\%& 2 by putting & = 2, s = 1, and identi-
fyving a1, as, 22 With’\{;\r@," z, respeetively.

Prediction. Gigen cstimates of the paramelers o, and o in (1), one
may predict she’valuc of z corresponding to a given set of values,
Zop, of thex@\bsérva.ble paramcters, The predicted value would of
course he("y“

,'s’\ Iy = E EpZop (13)
P

NN
\T B¢ prediction interval is set up by considering the varizte

U= — ZdyZo,

which is normally distributed as it is a linear function of normally
distributed variates. The mean of u is zero since both x and Z&fw
have expected value Zayzep. The variance of u is

o2 = E(u?) (1)

= E(ﬂ: — EapZup)z -4+ E[E(&p - C\‘Ip)znpjg (15)
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since z is independent of the #'s.  The first term on the right of (15) is
¢ and the second term is readily evaluated by means of (9). One
finds

of = o (L 4+ Y arsanz,) (16)
Py

Thus the variate
% / T

'\/na'z/(n — k)o?

has the ¢ diRLribution with n — & degrees of freedom (u being inde-
pendent of §%) and may be employed to define a prediction interval £m;
¢ ginee it involves no unknown parameters. O
13.6, Linesr Hypotheses. Referring to the multiple regreSsmn let
us consider how we might fest the hypothesis that thel regrebsmn
cocficients w, have certain specified values ag,. The pu !xhj(pothems is

(17)

Hoar—ap@=12 -,k adwe>0 (1)
AN
and the aliernatives arc : R
Hytmwo <ap< o (p=1,2 <, & ad o2>0 (2

’lhe subspacc w has one dimension, w}:ul“e 2 has & 4+ 1 dimensions.
If the likelihood (5.1) is mammmd i @ and in @, one finds the X
eriterion, after considerable algebfaw reduction, to be

A = .img 1
SEF T - B

where P is the quantlty in (5.12) with the &, replaced by o Hence
the X test 15 equiy 1ent to an F tost, and large values of F correspond
to small valuesof&; the null hypothesis would be tested by using the
right-hund m@f ‘rh( ¥ distribution for the critical region. When the
Yop are zeve) s is offen the case, the double sum in the numerator of
F may ey rmuced to the simple form, Zduyz by substituting for &,
from\);5)

A more commonly desired test is one which tests some but not all
the regression coeflicients. Let us supposc that we wish to test

3

whether the coefficients ai, as ° * * , @ (m < &) have specified

values ap, (u = 1, 2 - - -, m) whatever the values of the last & — m

of the o’s. The null hypothenls 18 now

oo — <o, < w{r=m+1, """ , K}
au=auu(“=1:"':m) o> 0 (4)
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while Hg is as specificd in (2). We shall mercly prosent the test
without the derivation because of the complex algebraie reduction
required. It becomes plausibie if one considers the marginal distribu.
tion of the e, (w =1, -+ +, m); this distribulion iz obtained by
integrating oUt dwpr, dmee, © ¢ ¢, o from (5.1}, After the integra-
tion there will remain a multivariate normal distrvibtion, and the
coefficients of the guadratic form will be, say, bu./o%  The by, are
obtained (See. 9.2) by striking out the last & — w0 rows and eclumns

of g”* and inverting the resuli; i.c., N\

o \ i A ¢

Bl =leimt we =12, - om0

. . c S
The quadratic form of the marginal distribution is | W
. ” N
L huv (&u - Q'u) ((ﬁ-v - a‘v)O\"\:'
Q=" : S (5)
ot .

and it has the chi-squarc distribution mt}l" m degrees of fresdom.
Sinee ¢ is distributed independenily 0£ 6\ the quantity

Q*m '
F ]
nd' /{n — I)e? ©
has the F distribution with 7 (md n — & degrees of freedom, The)
crilerion for testing (4} tufngs out to be
:..,‘\ )
¢ "":": . i T}
R T e = (
with the ed's fsulié’t-fﬁuted for the a’s in @; henee F' provides an equiva-
lent lest. N
We are/ndw in a position to consider what is called the generdl
linear thesis of normal regression theory. 'Che problem is to test
the h}‘PO‘GhE‘wla that the coeflicients «, satisfy certain lincar relations,
5&.‘5’

\ cne + ey <+ 0 0+ cuon = on
corar + fanag + 0 ¢ 0 4 Captky = Cpa
Cmicty -+ Coaz -+ -+ .Cm}gka = Cim

where m < k and the ¢’s are given numbers. These equations may be
written

Zeupliy = Cn p=12 ---,k w=12-"-,m @
ki
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APPLICATIONS OF NORMAL REGEESSION THEORY £13.7

We suppose that these m relations are indepondent, i.e., that it is not.
possible to obtain one of them by adding chosen multiples of the others.

The null hypothesis that (8) is true may be reduced to the form of
(4) by recasting the problem in terms of new paramectors, say 81, Ba
<+ +, B, anil new observable parameters, say wa, we, - - -, wp.  The
first m of the #'s are defined by putting

2 Capty = B (9}

The independence of the relations (8) ensures that m of the a's can be'
solved for in terms of the remaining o’s and the 8.. Supposing(thé
equalions ean be solved for the first m of the o's, the solutignd dfe
Silnpl}' . ) ‘:}‘ N/

Oy = e ,815 - ¥ Cortly ”‘:'t : (10)

Yol Fen) @

where « and » run from 1 to m and r runs from m 1Yo k, and wherce
the ¢« are the clements of the inverse of ||c%vjf:\\~The remaining 3's
may be put equal to the remaining &'s: \ v

v

ar = P o= m __}_’:1’3“;‘ - k (11}

These new parameters 3, arc now substituted for the o, in the mean of
< \\

S aes = I3 el — Jep)] e+ 3o 0D
e u X 1 ) T

The new observable p@r&s}mters arc then taken to he the coeflicienis
of the @'s in (12); Leytuis the cocfficient of 8, in (12):

N
Wy FINE R p=1,2"",m
O™ . (13)
N =z, — Ec““cwzu p=m+1 -,k
™ o :

Thembah of 2 is now exprossed in the form Zg,w,.  The null hypoth-
esis oécomes simply e = o (u = 1, 2, - - -, ™), the one already
discussed as (4). L
13.7. Applications of Normal Regression Theory. The cstimation
" and test procedures we have just developed have a very wide range of
application, The reason for this is the completcly arbitrary nature
of what we have called the observable parameters, The g, may, for
example, be artificial code variables. Thus, suppose in & fe“tqlzer
®Xperiment to investigate the effect of nitrogen and potash on a given
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crop, the erop s grown on plots with dilferent. {ertilizer treatments,

We may express the mean yicld in the form N wz,. Lot 2, = 1 fg
]

all plots; lct 23 be zero for those plots with no nitrogen and one for all
plots with a given application of nitrogen; let z; be zero for plots with
no potash and one for those with potash: and Tet 2, be zern For all plotg
except those treated with both ferilizers. Now cy represents the
vield with no fertilizer, «» the added vield due to niirogen, oy the
added yield due to polash, as ++ @y + « the addid vield due tor both
fertilizers.  Having performed the exXperinent, we may extindate the
o's, and we may test various hypotheses. Thus to test \\']1{‘.1?&{31‘ potash
has any effeet, wo set up the null hypothesis that it dovsaot and test
whether a3 and ay are both zero, Lo test whether ¢ffedts of nitrogen
and potash ave strietly additive (that there is noiedelivn between
nitrogen and potash), we wonld test whether a.k%‘{'j,

In another instance the z, may represent Fabcton- of <ome variable,
As an example, we may consider a time seried” The average monthly
prices of some agricultural product, agds for example, If plothed
against time over a period of years, Wil show rather ervatic looking
fluctuations but will lhave C(‘-l’i’.éLiH.‘izl}ﬁ(il'(‘.ﬂt- regnlarviiios.  There will
be a trend of some kind—a smoopth turve which may be ihought of us
representing the general clw.{u;(;tbi‘ of the varintion of price with time
apart from any fluctuation®\"Also there will be an annual eyele of
sorts; the prices in a giverdgear will usuully be hugher during the winter
months than the sumpidr months. A firm which stores cags in large
quantity may wisho know, for example, whether the amplitude
of the cycle is indépendent of the average price level from yvear Lo yearn
This question mlight be studied as follows:  Let x be the price, and les
trepresent e in months.  The data consist of prices g, e, ¢ 0 v ks
at timefe\{;—}-"l, 2, - -+ no Over the period of time included, let us
supposét is apparent that a quadratic function will (it the trond guite
\\’(;li\él.i'()ugh‘ Then the {ollowing regression function might reasonably
ropresent the trend and eycle if the null hypothesis (that Lhe amplitude

}s ;:onst-ant) ig true:
ar + aut + asf? + ap sin ST 4 g cos 2
12 1
If the null hypothesis is not true, the amplitude might reasonably be
supposed to be proportional to the gencral price level given by the
trend, or more generally, to be some linear or quadratie function of the
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time. To take account of this possibility, terms like

agt 5in 2]3; + ot 003% + ad? gin 21—7; + @yl? cos %f‘
would be added Lo the funetion given above, The 2, are now defined
by 21 =1, 2a =1 -+, 29 = ¥ cos (2at/12). The null hypothesis
would be tesied by testing whether the last four regression coefficients
wele 0.

The observable parameters may be any funetions of any number of
variables.  Thus, for example, a variate  may be known to be gome
funetion of two variables 4 and #, but the form of the function,, o)
f(a, #), muy be unknown, and the purpose of the experiment may e 1o
investigate the form of the function in the neighborhood of spme point
(ta, ¥a). It may be reasonable to suppose that the fut}cpibn can be
adequately represented in this neighborhood by a quadtatic function,
i.e., by the first six torms of its series expansion: ¢

%

: A\
Flte, #0) = Fuiw, v0) (0 — w0} + fultin, 2} (p — v} O

F Lylfun(ten, vo) (2 — %0)? 4 2fuo(ato, €308 — w0} (@ — vo)
\ S + fw(uﬂ; UO)(’B‘ - i‘)u)?]
where the subseripts indicate partial @ifferentiation. Onc would
6 A
.)_f’d,’,ép} where #z7 = 1, 23 = © — g,
O
=y, Z= (8- uo)ﬁ,:“é;, = (4 — uo)y — vo), 2 = (v — )2
If one wished to test the“adequacy of the quadratic representation,
eubic terms might be ifgluded in the regreesion function.

13.8. The Method 8 Least Squares. Therc is a general problem of
eurve fitting whidhyte entively unrelated to normal regression theory
but which mayibe solved by formulas identical with thosce we have
 obtained fox&stimating regression coefficients. .
Suppf?SQj;é%)111e variable % is a function f(z} of anqt-her varmble.z
and @atvhe function has been investigated by measuring z for certain
"hosegf talues of 2. The rosult might be as shown in Fig. 66. There
may be no question of random variation. The value m.ea.sul'e(rl1at
21 might be exactly the same if it were determined a second time. The
. But for purposes for which the fune-

o

merely  estimate the o'z in

f}lnct-ion s simply not smoeth,

tion is to be used, one may =

tion, 2ay a s.tm.ight line. How might sich an approximabng ’

drawn? QOpe might simply lay a transparent ruler along the points

and draw a line which fts pretty well, and this method may be as good
: 309
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as any for the purposes at hand. Or one might divide the points intg

two groups, the left-hand four and righi-hand four, and compute the

averages of the 2 and z values for the two groups, The averages 7

and 2 for one group will determine one point, anid the svorapges 7 and 3

of the other group will determine a sccond polni which, together

with the first, determines an approximating line,  There are many
possibilities.

X

z, Z, Zy Ze N Z, Ze Zy Za F4
«)
Fag? 66.

The problem iz gellerallyérﬁh-"ed by what 1+ called rhe metliod of least
squares. This method ¢lfboses that line, » = « + 8z, which minimizes
the sum of squares of thowertical deviations ot the p[m it from the line,
Supposing now tth\‘th(‘le arve n points (z;, @) (£ = 1.2, » - -, n)and
that we denote the mclmate of the point on the line at by 2!, the
vertical dewgﬂmm. arc a; = 2; and their sum of squares is, say,

A0S -t = Y s — a— )

A,%*" 7 ;

Wedrish to fix the line (determine « and 8) so that S will be minimized.
"Thrs would be done by setting the partial derivatives of § with respeet
#0 o and 8 equal to zero and solvi ing for @ and 8. The resulting equa~
tions are the same as (2.5) and (2.6).

More generally any empirical function x; = flu, », '

=12 ', n) may be approximated by any linear combmatloﬂ

Z @pZp of Lnown functions 2, of the variates =, », * * w by the
pel

method of least squares. One would choose the a's so a4 to minimize
the sum of squarcs of the deviations of the z: from : Z atypis 18

)
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one would minimize

S = (x; —_ 2 oepz,,;)"’
! P2

3

with respeet to the o’s and find that they were determined by the rela-
tions (5.3).

The primary reason that the method of least squares is commonly
used for cuwrve Giting is merely that it leads to a simple lincar system
of equations for determining the cocflicicnts.  To determine the coeffi-
cients by minimizing, say, the sum of the absolute deviations, or the
sum of the fourth powers of the deviations, would ordinarily be mouth)
more troublezome, Tt jusl happens that the form of the norrpél dis-
tribution is such that the sum of squares of deviations from theyegres-
sion funelion iz to be minimized to determine the coefficights in the
regression function, If, for example, the points in F3§ 66 were sup-
posed to be deviations from a regression line with ‘aNjrobability dis-
tribution oiher than a normal distribution, then i¥would be appropri-
ate to determine estimates of « and g by maﬁ}:njzing the likelihood
defined by that distribution. Even hcre,’thbdgh, the method of least
squares i commonly used in practice to,gweid algebraic and arithmetie
difficultics, and this is, of course, gdod and sufficient reason. The
theoreticul advantages of the princifile of maximum likelihood over the
principle of lcast squares may beome unimportant when it comes to a
matier of choosing, say, bet-\;’i{é‘éi a 40-hour and & 10-hour computation.

13.9. Notes and References. A more complete account of the
theory of regression may he found in Chap. VI1I of Wilks’ book [1]. In
particular, the proof‘&'f' the important result that &2 is distributed inde-
pendenily of thesg'w'is given there. The notation of Secs. 5 and §
has been made(glfite similar to that of Wilks in order to facilitate
reference to, t’hr\af proof and to others which are omitted here.

There ida great body of literature on a subject which we have
omit et e?luirelv. A special case of normal regrossion theory of par-
tieuldw dnterest arises if one considers the conditional distribution of,
SAY, %1 in a k-variate normal distribution; it is normal with a mean
which ig 4 lincar function of the other variates, Tz, &, * * * 5 L& The
eoefficients of these variates (corresponding 0 what we have Gall(-:,d.ap)
are certain funetions of the variances and covariances of the original
multivariate normal digtribution. Estimation of these c-oeﬂic%ent-s
implies estimation of certain corrclations and partial COI‘I‘B]E[-tlQn =
There is an claborate theory associated with this sort of correl’at.lon
analysis which was once regarded as a very esgential part of statistics.
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§13.10 RECRESSION AND LINEAR HYPOTIESIS

In recent years it has come to be realized thalt most (though not »)1t
correlation problems which arise in practice can be handled more
appropriately by regression methods. The lutfer require only the
assumption that deviations from the regression function be normal,
whereas the eorrclation analysis requires that the variate and wha
we have called the observable parameters all be Jointly normally dis-
tributed. A good account of correlalion analysis is given by Kendgll
[2].

A rather complete treatment of the theory of least squareg 4nd its
various applications may be found in [3]. In ] arc ircated o preat
variety of practical problers in regression and correl a].[.-ig]r( a\nz\'tlysis.

L 8. 8. Wilies: “Mathematical Statisties,” I’rinn'-.oi'rm,lf}gi\{-'orsity Press,
Princeton, IN. J,, 1943. ) e\

2. M. G. Kendall: “Advanced Theory of Stalimﬁ?." Vol 1, Charles
Griffin & Co., Ttd., Londen, 1944, ’

3. W. BE. Deming: “Statistical Adjustmepgsot Data,” John Wiley &

: Song, Ine,, New York, 1943. &

4. M. Ezckiel: “Mecthods of Correlation Analysis,” John Wiley &
Sons, Inc., New York, 1930. _y ™

13.10. Problems N

1. Vorify equations (2.22%and (2.23).

2. Derive the likelihagdratio eriterion for testing the null hypoth-
esis that the parametef @ of See. 2 has the valuo .

3. Verify cqual;.j&% (3.3} and (3.6),

4. Verify cqualinns (2), (3), (4), and (5) of Sec. 4,

5. Verify offation (3.9).

6. VerifyZaduation (6.3).

7. Verify cquation (6.7).

8. G%‘Ren the data:

*

o) . ! ' T 21
N6 05 72060 —02 —21 | —30l38) 75! -2

\\ } | —. R —|— —_'———‘
-2.0 0.6[1,4‘1.3I 00" —1.6] —1.?i0.7 —~1_85 ~1.1

fita regression line assuming x is normally distributed about a linear
funetion of 2, and find a 95 per cent confidence interval for ihe coeff-
cient of 2,

9. Plot the regression line of Prob. 8 and plot two curves show-
ing the 95 per cent limits of predietion intervals for + in the range
—3 <z <3
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FROELEMS §13_ 10

10. Plot a 95 per cent confidence region for the two regression
pammttem of P’rob. 8.
. Given the data:

T 1z.1 . 11.9 0.2 806 7753 |79 |78|55](25

2 7

al o ‘ 1 2 3 4 5 6 7 8 %
E
]
]

4i5464211i10

fit a regression plane, and find a 95 per cent confidence mtel‘(al
for &2, N

12, Tind a 95 per cent conlidence interval for a; of Prob. 1 i‘.“’

13, Test the null hypothesis thut a» of Prob. 11 is zerg

14 Whai iz the 95 per cenf prediction interval f01\fr,\ at 2z = 2.5,

= 2,5 1in Prob. 1172

15 Test the null hypothesis that a; + 102 =0yn Prob 11,

16. Using only the first two rows of the da}a of Prob. 11, fit a
regression function of the form

ay + a1y f»@ng

and test the null hypothesis that qg:’f;‘ 0.

17. The fitting of polynomials§tich as the quadratic of Prob. 16 is
much simplified when the valués are equally spaced by using orthogonal
polynominls. Let 2z = 0, I‘x\ , n. The first three orthogonal
polynomials are \\‘

Py~ gt
7w\ a4+ 2)
\%’r ° 2) Y
O .
\\ n _Eﬂ”+3—4'%‘%
e N 20 2
Sh@{v\tﬁét

EP1P2=EP1P3=EP2P3=O

18. Rework Prob. 16, fitting instead the regression function
. ap + Py + e
where Py and P, arc defined in Prob. 17.

19, T z; and x, have a bivariate normal distribution, what are the
313
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coefficients (in terms of g1y, o4z, and p} of the regression function for the
gonditional distribution of »17 For the conditionsl disiribution of g7
If the two regression lines were estimaled from {he same sample,
would they, in general, be different?

20. If z1, x4, 73 have a trivariate novmal distribution. what are the
coeflicients of the regression function for the conditione] distribution
of z,, given @z and 73, in terms of the vaviances am! corcelations?
<21, If the corvelation p of a bivariate normal distribution is zero,

show that ifs estimator 3 has the density N
[(n — B)/211(1_— ) v \
== — ¢\
Ver [ — /2]
for samples of size z. :"}". -

+ 28, Referring to Prob. 21, transform 5 to a 110\\;’2’:-1:'.&.!'.1'.0

AN

2
VT =
showing that it has “Student’s™ distgibistion with » — 2 degrees of
freedom so that the £ tables may he ugcdfor testing the amll hypothesis
p =0 ""L 3
23. Assume thal the data Qf}@rbb. 8 ure from o bivariate normal
population and test the mull hgpothesis that o = 0.
+ 24. When p is not zero,the distribution of j s not a sinple function,
but it has been tabulated for n, the sample size, less than 25. For
larger »n, Fisher has %{B{)‘\'{?n that
," z = L tog L+ p
P\ 2771 -5

$

ig appromgmlgt-ely normally distributed with mean

J;f’\ P O .
AN TgET 4

O
“apd variance 1 /(n — 3). Using this result, cstimate roughly a 95 per
eent confidence interval for p of 1’robh. 23,
25. Derive the X criterion given in equation (6.3).
26. What is the maximumdikelihood estimator of the multiple
correlution coeflicient Ri..; (defined in Prob, 27 of Chap. 9). _
27. A variate 2 is distributed about a linear regression functiof
a + Bz, by the density

Sy =1 a4pr-lf<u<atpztls
314



PRORLEMS §13.10

Find the maximum-likelihood estimate of the regression function,
given the sumple of four points (=, 2): (0.3, 1), (—0.6, 2), (—1.7, 3),
(—1.8, 4}. Corapare it with the least-squares line.

98. A variate x is distributed about « + 82 by the density

&) = Yetomamia 2> o4 + B2
= Mgermorhs T < a+ B2

Estimate the regression function given the sample of four points
(z, &): (3.4, 1), (7.1, 2), (124, 3), (15.5, 4). Compare it with the
least-squares line. N\

29. A normal variate z has mean « -+ 82 and variance ¢% AThe
parameter z can take only the values zero and one.  Set up aedh of
the hypothesis that 3 = 0 and compare it with the test of thé‘equality
of means of two normal populations with the same Vanafu,eﬂ (If the
two means sve g and pge, let @ = moand § = pe ~ uo

30. Referring to the situation described in t-he‘ﬁ;kt paragraph of
Bee. 7, set up & test for the null hypothesis @N="0. Assume that
there arc -in observations, there being = for ;eé:ph of four treatments:
no fertilizer, nitrogen, potash, both nitrogaf{}nd potash.

N/

o™
L\
k 4 & »
Vo ol
¢
S
2
O
O
N
N
)
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CITAPTER 14
EXPERIMENTAL DESIGNS AND THE ANALYSIS OF VARIANCE

\_-14.1. Experimental Design. Tho general subjeci of experimental
design is too broad to be included with any degree of completghess in
this book. It comprises the processes of planning cxpeditnents,
analyzing the results, and interpreting the results, We sgaprimaily
concerned with the last-mentioned problem, whiclh, GR so far as
statisties is involved, is a matter of statistical infef®ce. The teeh-
nique for making inferences is known as the mzfd;,f;s’-s.'s of variunce, and
it iz that teehnique which will be studied in this"‘qh‘]u.pl,(.\r. T order o
motivate the study, it will be instructive, however, to consider briefly
some of the general aspeets of experimentihfesion.

An experiment js intended to find putsomething about the relation
hetween two or more variables. Ferlekample, one muy wish to dis
cover the effect of carbon eontend *(one variahle) on the hardness
(second variable) of steel; theffect of a drug in preventing eolds;
the value of paint in preser¥ing wood: the cffect on flavor of mest
caused by cold storage; anehso on. Any experiment mav be thought of
as an investigation of sdymetion of two or more variables.  As we have
noted in the firsl ¢ ffﬁﬁ;zr, zome variables may he entirely unwanted
but must in the whture of things be involved in the experiment. In
the terminologyZef experimental design, one variable may be called
the subject af\tho experiment while the other variables are called
factors. _Thits, carbon content is a factor which allects the hardness
of Ste“;i\’&flé subject of the experiment); freezing (a fuctor) affects the
Aaveomael meat (the subject). _
. ‘Il“l\ planning cxperiments, onc has on the one hand certain prie

Segples of experimental design, and on the other a large class of geomettt-
cal configurations, specific experimental designs.  In accordance with
the prineiples, one fits a specific design Lo the projected expcrim@t

In the course of this chaptor we shall illustrate some of the prineiples
and give examples of a few very simple designs. Dub first we may
observe two important principles of design which ave largely matters
of common sense and expericnce. The first is: cvery possible oulcome
of the experiment must be anticipated and a eonclusion decided upon
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EXPERIMENTAL DESIGN 8141

for each puasible outcome in advance of performing the experiment.
For example, suppose » man claims he can read his wife’s mind to the
extent that he can very offen tell whether she is looking at a red or
“black playing card. To test this contention, the following experiment
i3 to be performed: His wife is to look at cards drawn one by one
from an crdinary deck, and the man is to say in each instance whether
it isred or Liack, If the whole deck is to be used, there are 53 possible
outeomes; he may call 0, 1, 2, - - - | 52 of the cards correctly, And
lot us suppose 1t 18 agreed to accept his claim if 40 or more are called
correctly and 1o reject the elaim # 39 or less are called correcily. This
simple cxperiment is now completely designed in the sense thag, the
conclusion i only a matter of performing the experiment, obderving
the number correctly called, and adopting the appropriate c-oh(}lusion.
If it turned out, for example, that 30 cards were callgdNgorrectly,
among them 12 of the spades, the man might argue;’that he had
demonsirsted hig ability because the pmbability’oﬁ"ﬁﬁﬂing 12 spades
correctly under the assumption of random callingNs so very small as
to make that assumption absurd. This argu;n?el}t‘is not valid because
any set. of 30 cards can be found to have same\peculiarity which would
make it highly improbable under randopiySampling. (Tn particular,
of eourse, the probability of drawin.gfé;m; specified set of 30 cards is

1 / (gg) =~ 1(0+1% for random seljéc‘r;iaon of 30 cards without replace-

ment.) Any inference fromd@xperimental data cannot be supported
by a fiducial probability @tatement unless that inference was taken
account of in advanceof The performance of the experiment. Any
seemingly significantNput unforeseen inference can only suggest a
‘new experiment. S\ I Aollows, of course, that an experimenter who does
not anticipate 'agiy'infcrcnces at all but mercly wails to sce what will
turn up inthe data, cannot support any conclusion whatever by a
fiducial pefhability statement. o
The sivond broad principle we wish to mention specifically is this:
the'l‘e\n}tlnt be an clement of randomization in the experiment. An
experiment is performed to test a hypothesis, or to gstimate a param-
eter or a sct of parameters. The hypothesis adopted is supported by
odds based on a computation which assumes random sampling .undur a
null hypothesis.  The parameter is eslimated by a conﬁdepce interval
with a fiducial probability determined by the agsuymption of random-
hess. It 35 quite evident that the results of an cxpel'ir.nent canlnob. he
Supported by probability statements unless the sampling was in fact
tandom. Referring to the card-calling experiment deseribed above,
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the null hypothesis is that the man has not ary ability 1o call the cards
correctly. The probability of calling 40 or more cards correctly i
roughly .0001 under the assumption of random calling, and the yl!
hypothesis would be emphatically rejected if 40 or more were ealled
correctly, provided random sampling is operative under the null
hypothesis. The proper condition obtains if the el are presented
in a random order (by thoroughly shutfing the d eck, for example), for
then the result of the expertment will have a random wim pling distri-
bution under any system of ealling which is independini of the aetual
sequence of eolors of the cards. (1t is tacitly assumed here that red
and black will be called in about cqual numbers, 1hat ane will ot call
all 52 cards black, for example.) One could, of colr=ed prgsent the
cards in some order particularly devised perbiaps Lo f‘r.gnﬁ?se the caller,
and the caller might nevertheless be quite siceessiud i establish his
ability beyond reasonable doubt, but one eould n L'JlZfI“l('.’lS‘._lT‘e his sueeess
in probability terms.  Statistical inforence s imps=ible in nonrandom-
ized experiments. \

It has been found in practice that pergsqm\-'a_'(:;mnot be relied upon to
write down random scts of numbers ot Qw?‘ﬂ.‘ " Randomizetion in experk
mental design must be carried out B%%etually tossing soins, casting
dice, drawing numbered chips {mﬁm"a bowl, or the like. Specially
prepared tables of random nmmbers have been published to save
experimenters the trouble of qi’f,;r'forming these operations.

14.2. Analysis of Variapce’fn Regression, The analysis of variance
18 & technique for testing\incar hypotheses, and basically it is just tl%e
technique dcscribed\ii( the preceding chapter,  All we shall do in th{s'
chapter is study that'technique in more detail and investigate simpli-
fieations that ca{ﬂ:be made in applying the technique to certain special
problems thaf_irise frequenily in practice. The point of view, how-
ever, will belsomewhat different, and to illusirate it, we return to the
simple\lri}cfar regression problem,

Letus supposc that a variate # Is normally distributed about o regres-
‘gieﬁ\’ﬁmction a + 8z with variance o2 A sample of size n is Ob.‘.i(?l*‘n:’ed:.

& y21), (72, 22), - - » @y 22). Let & and 8 be defined by cquations
(13.2.8) and (13.2.9). The sum of squarcs of deviations from the true
regression will be divided into two parts as follows: :
ey — o — Bz} = . — @& — 33;' + & + 33» — a — Bz)?

= 3o - 4 — fo)?
+ 22z —a — B+ fa — a — B2)

+ 3& + o — o — g )
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ANALYSIS OF VARIANCE IN REGRESSION §14.2

The middie sum on the right of (1) vanishes identically, as may be
seen by performing the summation and using the definitions of @ and §.
The firsl sug on the right of (1) is the sum of squares of deviations
from the estimated regression function; it is just ng® where ¢% is the
maximum-likelihood estimate of ¢ defined in See. 13,2, The third
gum on the right of (1) is, apart from a division o2, the guadratic
form (13.2.30) in the distribution of @ and §. The total sum of squares
on the left of (1), on division by ¢?, has the chi-square distribution with
n degroes of freedom; it has been partitioned into two parts which are
independently distributed by chi-square distributions—one with n — N
degrees of [reedom and the other with two degrecs of freedom. ¢\

The third sum on the right of (1) may be further partitioned Jinto
two parts cuch of which are independently distributed by chi*square
laws with one degree of freedom. It is apparent from {18,2.80) that
@ and § ure nol independently distributed except in tl;e(s})écial case in
which Z = 0. Towever, Z and § are independenblyAdistributed, as
may be seer by changing the variable d to Z uskng:the substitution

8 =3 — o0 {2)

in the Joint distribution of & and 3. lg’f’a-ct, z and § are independently
normaliy distributed. In terms of $hese variables, the third sum of
(1) 1 RN )

2@ + fr — o — pr) = 2@ B2+ e — o — )’
Sz — a— 7))+ (B — B — D
AN= 25— a— 02+ Z[B - B — 3P &)
P R L (R R R R CY
The sum of Q{%S’products hag been omitted in (3) because 1’F- is readily
seen to vaniskrsince =(z; — 2 = 0. The two terms on the right of (4),
apart fidm a factor —2¢7, are just the exponents in the univariate
noppagl_Histributions of  and 8; hence they are independently dis-
tribuged by chi-square laws with one degree of freedom. . .
The total sum of squares of deviations has now been partitioned into
three parts:

2 —a — pa)t = w— A St 4 (B — 8)"2(z — 2)°
{ 825 T — & — Bzt + ( I "

each of which is independently distributed by chi-square laws. We
turn now 1o the question of testing whether « and g differ from zero.
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[f, in particular, a and § ave put equal to zero throughout (5), we have
Zzi = 2z — 4 — 82" + 2z — 72 4 up (6)

All these terms are directly caleulable from the data, snd in the analysis
of variaunce, this partition of the sum of squares is ustally exhibited
in a table such as the one given here. T a particulur problem, the
entries in the table would all be numeorical.

ANaLyals oF VARIANCE FOR S0rLe Disuan Huunrmusron * 8 N\

N s
Tie- ‘ AN
. NS *
recs )
Bumn of gree N
Souree U af Mean square A\ F ratio
SUATE: {ree- P 3
dam { &/
"\
Meoan nE?
Slope Frxfz; ~ )0
Devi- !
. e, — & — S22
ations (e = & — 3}
Total b
AN i

Now let us corSider the null hypothosis that @ = 0. 1f il is true,
then the sums\dfaquares in the second and third lines of the table are
independenthypdistributed by chi-square luws with 1 and » — 2 degrees
of freed mt){‘cin division by ¢), and the ratio of the mean squares wil
have theWF distribution with 1 and n — 2 degrees of freedom. This
exqpl;fljﬁ the test given by (13.2.32) because the square of a ¢ variate

j}if degrees of freedom has the F digtribution with 1 and % degrees of

Nededom (Sce. 10.8). The sum-of-squares cntry in the second line

of the table is said to be the portien of the total sum of squares 54}
associated with 8.

Now let us turn to the frst line of the table. The F ratio in the first
line provides a test for the null hypothesis, « = 0, only if ¢t 18 aSS'u-mefg
that 8 = 0 (unloss # happens to be zevo).  Thus the lwo F tests ind-
cated in the right-hand eolumn of the table are of two different kinds.
The sceond one tests '

8 = 0, whatever @ may be
320



ANALYSIS OF VARIANCE IN REGRESSION §14.2

the first one tests

a = 0, provided 8 is actually zero

These statcments are evident on comparing (5) and (8). The first
term on the right of (8) has the chi-square distribution whatever « und
8 may be; the second term has the chi-square distribution whatever
« may be provided only that 8 = 0; the third term has the ¢hi-square
digtribution only if @ + 82 = 0.

The Lwo tosts on « and 8 are said to be nonorthogonal.  1f it had beef ™
possible to partition the two degrees of freedom for « and § into/fgo
single degraes of freedom, one involving @ only and one involfing’ 8
only in such a way ibat they were independently distributed, then we
should have had orthogonal tests of « and g and could{test « = 0
whatever 3 might be. LV

If in colloeting the data, the values of 2 are choser 8dthat 2 = 0, then
orthogonal tosts of « and § are available. For (len @ becomes equal
to &, and in fact the F test indicated in the ﬁrst{in} of the table becomes
equivalent to the ¢ test given by equatlén) (13.2.31). It is to be
recalled, of course, that we can test a, = without assuming 8 = 0
by using that { test. .;.’:"

The eondilion of orthogonality ds regarded as desirable because it
provides a partial measure of stabistical independence in tests. Sup-
pose = 0; then the two testé of « = 0 and § = 0 are still not statis-
tically independent bccausé"a)e two F ratios have the same denomina-
tor. Tf one worked oututhe joint distribution of the two ratios, he

“would find that they a:re not independently distributed. But the fact
that the two numeradors of the F ratios are independently distributed
has some intuie’appeal. 1% is usually imposgible to design experi-
monts so as ‘Kétgéi: completely independent tests, but it is often possible
to design €hem so as t0 get orthogonal tests. Thus in the present
examm%’ \One can investigate a regressiont funetion « + $z by means
of ghe'tvo £ tests described in Sec. 13.2, and these tests arc nonorthog-
on}}iﬁ gencral: it may be possible, however, 10 seleet z values so that
£ = 0 and thys obiain orthogonal tests. _

From the practical point of view, orthogonality is quite desirable
because the analysis of data is usually very much gimpler for crthog-
onal than for nonorthogonal designs.

Test of Lineardty. Before leaving the linear regression problem we
shall consider one other togt which is quite useful when the data are
such that it is feasible. Suppose that for one Or MOTE of the 2 values
there are two or more = observations. More precisely, let there be &
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distinet values of z—2, 23, - - -, zZr—and let the » ohsorvations by

denoted by @y where s = 1,2, -+ - [ kbande =12 . . e Cop-

responding to z,, there arc thus », = observations, unil we assume that

not all the 7, are one.  Letting n = Z the, We may reliabud the g, calling
&

them 1, zs, © - -, #, and perform the analvsis atready deseribed,

The deviations from the fitted regression muy be wiil ten

E (:1'.1- — & — .837')2 == E (.E‘-,f e 3,;' 2\ ('}')

N ¢
in the 2, notation; the 2 are nll distinet, while the g Gt with the
. . £\ :
data under present consideration. O
The right-hand side of {7) will now he partitiona@ o two parts as

follows:

’\’\.
2 (xst —a- éz’)z = E (Isi - fs ‘+" I, — aN Sfi\)z
at 11 N
= E (e — E)* 4 ,‘(_\‘x(‘.rs Ce ol Haggt
a PN
=) (e ~ fx){%”'g no(Zo — & - G2 (8}
4E NS i

%

where Z, = E Tet/Na. The fikst sum on the right s fhe chi-square
t e
distribution with E (n{‘— 1} = n — & degrees of frecdon, whaterer

the regression funCSf\&i"}nay be.  For, for fixed z, » iz normally dis-
tributed with vghance o2, and the sample xi, T, 0, g Of B
observations‘fo‘w’.%" = z1 provides a sum of squares } (vy - %)% which
» !
on divisioi;hy ¢ has the chi-square distribution with #, — | degress
of freez%iﬁ: The first sum on the right of (8) is simply the sum of al!
such chi-squares for the various values of z. ‘The sceond sum of
L3qUates on the right of (8) has the chi-square distribution (with & — 2
degrees of frecdom) only if the regression function is in fact of the form
@ -+ 8z. Thus
F - %E:Es ~ & = Bz (h — 2) )
2, (vee — T (0 — k)
at

provides a test for the hypothesis that the regression function is of the
form o 4+ 8z, and the eritical region is the right-hand tail of the F
distribution since a regression function different from o -4 8z would
tend to increase the deviations of F, from & + §z..
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Though this device is called a test for linearity, the same technique
could obviously be used to test the validity of any specified regression
function provided the function was lnear in the unknown ecefficients
and therc were fewer cocflicients than distinet values of 2

v14.3. One-factor Experiments. As an illustration, let us suppose
that a fuctory manager wishes to buy machines to perform a certain
operation In a production process. There are four companies which
make such machines, and he obtains onc on trial from cach company
with & view to determining which of the four is best suited to ‘his
purposcs.  Suppose also that a machine is operated by one aan.
The manager intends to have several of his men operate the mdwliines
for & few days in order to discover which of the four produces the most 4
items per duy. In thig gimple experiment the subject is t-}ié'ﬁumber of
items produced, and the single factor is type of maclli({a’

Let us suppose that twenty men are to be useddn the experiment,
five being assigned at random to each machine, apd'that each man will
work one day on the particular machine he was assigned to. There
will then he five observations for eachb{ :hle four machines, each
observation being the amount produced‘by the machine in one day.
The data wight be such as appear inlthe accompanying table. The
question of interest iz whether or.}:fcjﬁ the machines are different with
respect LG number of items prodiiged; i.c., is the subject of the experi-
ment affected by the factor {)éing investigated?

7\ 7

\\ “Machine number

&1 2 3 4

PRI 6d | 41 | o5 | 45

\\ 390 | 48 | 57 | 51

65 | 41 | 56 | 56

N 46 | 49 1 72 | 48

mJ 63 57 | 64 47
\‘: i

In order to analyze these data, the following assumptions will be
made: the five observations for machine 1 constitute & random sample
from a normal population with mean £, and variance a*; the observa-
tions for the second machine are an independent random sample from
a normal population with mean £ and the same variance ¢*; and simi-
larly for the other two machines, The assumptions are thus:

1. The samples are random.

2. The sumples are independent.
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3. The populations are normal.

4. The populations all have the sume variance (often ealled the
assumption of homoscedasticity).

In the general one-factor cxperiment, the factor will appear at &
levels (inst-ead of four); the observations will he denoted by ay;, with
i=12 ---,kandj=1,2 -, n, allowing for the possibility
that there may be different numbers of observations atl each level,
The joint density of the wx;; is the product of the individual densities:

k 4ii .”\

1 t —(1/2a%) E 2‘; [EZTFE SE a N
Ly 2L )y )
\/Ero’ O

where n represenis 2n,. The null hypothesis to g fested is that
Sir=f=£f= - =§ One could obtain ‘gif’:\l*(‘-ﬂ. by the Iikeli-
hood-ratio method, ie., by maximizing (1) \x“:?l;h. respeet to all the
parameters, then with all £ made equal, :mcl’us'ing the ratio as a test
eriterion.  We shall, however, proceed dj&"e}én!ly.

The average of all the population means will be denoted by &,

s§'

V § S‘ ?J‘g‘ (2)

?lf-.*~~

‘

and the deviations of the ‘,‘-‘frtim £ will be denoted by
a«’s¥ S - 5 Zn; iy = 0 {3}

The a; arc called Lh\a%cts of the factor; the effeets are zero under the
null hypothesis. ¢ Also we shall denote the cell means by

B

N/ 1

7o =N 0

and thl;\nean of the whole set of observations by
& \ ) 7o L _Iy (5)
) £33 =10
3

\ 1‘?
N\ 4
The sum of squares of deviations from the population mean for the
observations in any one cell may he partitioned as follows:
2 (xy — £)2 = Z (zg — & + & — &)°
H i
=Y (g — Z)° + ne (B £)° (©)
b

and the two terms on the right of (6) (on division by o) have inde
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ONE-FACI'OR LEXPERIMENTS §14.3

pendent chi-square distributions with 2 — 1 and 1 degrees of freedom,
as follows from Sec. 10.4. On summing (6) over %, the total sum of
squares is partitioned into two parts:
% (@ — 80 =3 (a — %) + ¥ (& — £)? (7)
i i 7
independenily distributed by chi-square laws with n — & and %
degrees of Ireedom. The second tcrm on the right of (7) may be
further partitioned:
v w R B2 R m Bl = o £}2 a
25 ?’11(117; g]) Z"‘,n%(xt & a + T E) R ¢ N
O
=Y m@ —F—a)+uE -9V o®
i

L ¥

The two terms on the right of (8) are independently¢distributed by

chi-square laws with £ — 1 and 1 degrees of freedom@$ nay be shown

by an argument entirely analogous to that en;{)}oyed in See. 10.4.
72\

We have then

7
"

E (@i ~ &)* = E (g — Z)* + E n{Z —, 5—" a)? + (@ - 5 (9
7 7 3  \

and this partition is usually exhibited b an analysis-of-variance table
such as the accompanying one withthe parameters put equal to zero.

ANALYSIS OF VARIAKGMN\FOR OKB-FACTOR ExiERIMENTS

] N
: §)
. . rees .
Bomres Sum of £ : of lef;‘;:) F ratio
squarf*ﬁ J | {ree- 4
x«\ dom
_. L)
Mean ,Qa“" ]
— . __ N _
~O i i E ni(E = I) Em(f" — Bk - D
Effepls’ W walf — §)2 S T
5 Do — Ik 1 Fa— E (ze; — &)/ (n — k)
! o .
2 {mi; — F)*
P ) i
Deviations >_( {we; — &) m — & n—k
i
Total E P2 n
]
i
—_—— e
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§14.4 EXPERIMENTAL DESIGNS AND THE ANALYSIS OF VARIANCEK

The ratio in the right-hand column obviously has the F distribution
with £ — 1 and n — % degrees of frecdom under the null hypothesis,
= (}, and thus provides a lest eriterion for that hypothesis.  Ordi-
narilv there is no interest in testing £ = 0, hut if there is, the quantity
72 divided by the mean-square deviations will huve the £ distribution
w1th 1and n — % degrees of freedom under that null hymovhesis,  This
latter test, incidentally, Is orthogonal to the ftest on o, [or the lerm
on the right of (8) does not involve the a.

14.4, An Application of Normal Regression Theory. 'The forthoing
analysis of the onefactor experimentt is somewhar wrtificial in that the
partilion of the sum of squares seems to have no par ir-tL1.:L1;\fﬁ‘@ﬁ\’ati(Jn,
How would one know to embark on such an snalvsis i b fivst place?
Having developed a logieal theory of testing li11(‘:1.1'"ki-’fm[‘-ht:st.‘.s in the
preceding chapter, why not apply it here? The¥swoer is that the
foregoing analysis is relatively simple, wherep B¢ anplication of the
general theory involves some troublesome Nbgchraie manipulation.
As experiments become more complicatod?, ‘h'w alaehin of the general
method becomes quite complex, m\'ol\ mg} az it does, the inversion of
large matrices.  With experience, one ean develop a facility for par-
titioning the sum of squares appl‘omm tely and (hus gave himself a
great deal of mathematical {I.Il‘.ll\'y"*s‘l‘-s

The simple partitioning of%he sum of squares happens to give the
correct tests when tests ax@erthogonal, but it does not prove, withous
advanced ma.thcmmti(,sgi”%rguments unavailuble 1o us heve, that the
tests ure correct. A Nigorous derivation of the tests does quU”e
application of the“general theory, and we shall Hlustrate s such an
application for {fids one-factor experiment,

The & normgl ‘populations of Sce. 3 may be combined into & normal
regres&c){s:}-,tcm with mecan

"\

o A 1
RN b= 3o )
\here 3;is an observable parameter defined to be one when an observa-
tion is drawn from the /th population and zero otherwize. The means
£ thus become coefficients of & lincar regression function. It ¥
sunpler, howuever, o set up the regression function in terms of the
«'s 50 that the null hypothesis is in the form o =0 rather than
£ =& = - = £, i.e., in the form of (13.6.4) rather than (13. 6.8).
To this end, we write (1) as

= {4+ Zbiey (2)

326



AN APPLICATION OF NORMAL REGRESSION THEORT §14.4

but now we have one too many parameters because the a; are connected
by Zmer = 0. We shall eliminate e from (2) by the substitution

B—1

1
o = - n—sznm | (3)
and get
E—1 =
=E+25£ai_n'—kak2ﬂgag
1 T )
bh—1 \
= > a6 - ~ak) + ¢ R,
T ( N\
% N/
Now we define new observable parameters 2, by ,\u}"
D
2y = 0p — np ak p=12" -, ki:i\\‘ (5)
= = N 6
1 p=k AV (6)
&/
or, forp = 1,2 - - -,k ~1, ‘\
2, =1 if xg, ham =1p
= h = 7
= :Lf \% as 1 {7}
=10 - othermsc
\
The regression funetion is s HOW
ST
t?: o= E oy + £ (8)
P\ T

and is of the )ri ‘diseussed in See. 13.5, where £ is to be identified with
the a, of ti ectlon
bmce, .Gbovmusly,

/*\ ,, é‘; = 7; . (Q)
we have at once the estimators
& =3 — & ‘5=1,2:"'rk_'1_ .(10)
é =7 : an
6% = nz (s — 2)* _ _ (12)

The test of the null hypothesis, & = 0, is given by (13.6.6) so that we
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8144 WXPURIMENTAL DMSIGNS AND THE ANALVEIS OF VARIANCE

musgi only evaluate €, which is deflined by (13.0.5), o this end, we
must examine the matrix ||e,,)| defined by

Bpg = 2 Epijeatf {13)

i
since the sum on ¢ in Sec. 13.5 refors to the sum over ull zample observa-
tions and becomes the total sum over ¢ and 7 in the present: example.
2y 18, of vourse, the value of z, for the obscrvation wy Tt follows
readily from equation (7) that the matrix is

O\
: 2
: n: o onans Ry 2 Py N4l
‘ ny + s ; b L il 20
Ty Py e Hy £\ )
Fipfts ni o omama PPN S i
Tla _|_ _= - N A ‘.n}‘ {']
i Mo T -’t-.;-" 3
$%¢ 2
W -
' _ ~ )
lltnd| = \ . ‘ {14
LT Thollp_1 Nz .’:\\; | |
- g e 2 / ,_1 :
it Tl Bafle 3 LV R )
Tig 31 SN L ;
L0 0 o\ - 0 el
. N\

To obtain the coeflicicnts bw.}\"ﬁ’ic'h appear in ¢, one would ordinarily

«+ Invert (14), then strike out thElast row and column (m being b — 1 in
the present example), thei Snvert the result.  This work is not neces-
sary in the instance at h‘u}l for Q 18 1h(, gquadratic form of the marginal
distribution of the &ifu = 1, 2, , & — 1), and it is apparent {rom
the form of (14) thit the &, dnd £are mdepondoutl\ distributed. That
is, because of AV zeros in | @4, the joint distribution of the d&. and £
may bo Wlliﬂﬁ(ﬂ as the product of a function of the &, ulone and &
functlon\f\f alone. It is evident then that

o\ buw = we=12 -+ k=1 (15}

hefiSh that
k-1
02Q = 2 (T'J"“(Sm; + Rulty
W= i

\ }

) (aAu - Q'H) ((ft\v — Ct,,) (16)

In this expression we put the o’s equal Lo zero, and we may substitute
from (10) for the &'s to obtain

o} = znu(:fu - & 4 % Z Nyftn (T, — BT — &) (17)
&
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The second term is simply

L[S —o] -3

1 = - =1"
a.[m — mix ~ (0~ n) I}

I
F

Y onta = (o w2 ]

H

= 'J’L,r:(i - f,{-)2
Thug § becomes

k
1 .
Vcz E i — 2)° (s
and the I ratio (13.6.6)} is O\
2 Eﬂg(fﬁ — f) 2/“3 — ]) o
F = i . NS O(19
- Iz~ &)Y (n— k) P\ (19)

the same as appears in the analysis-of-variance table of ihe preceding
section, "’\

We have shown, incidentally, in this scction that'the two terms of
equation (3.8) arc independently distributed bgPeli-square laws.

14.5. Two-factor Experiments with One/@bservation per Cell. Tt
may have been noticed that the experimiént described in Sec. 3 was
very poorly designed. The troublemis';that there is an extraneous
factor, ability of the varvious workén, which must neccssarily cnter
into the cxperiment. If, in thefxperiment of Sec. 3, the production «
from onc¢ machine furned owl{to be relatively large, was it due to the
machine, or to the excellptﬁse of the particular group of workmen
assignod te 147 ‘I‘here\'@\ﬁo way to tell from that experiment. In
the langnage of cxperlmental design, the effects due to machines and
the effects due togtoups of workmen are completely confounded; there
s no way to diffeireht-ia.t-e the two factors.

The difigulty*is removed by redesigning the experiment as a two-
factor expe’f%n“ent. Let, for example, only five men be involved in the
experimént ‘and let each of the five men work one day on each of the
fou“dfﬂﬁchincs. The order jn which a given man works on the four
mashines would be assi gned by random process. The data are now
classified in a two-way table in aceordance with the two factors and
might appear as in the table on pagt 330. When a two-factor
experiment, is used to control an extraneous factor as in the case here,
the design is referred to as a randomized block design. The factor of
interest is compared in bloeks (men, in the present ins.tance) 50 that
conditions of the comparizon are homogencous within each block

though they differ from block to block.
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BMachine
] 2 3 1

1 53 47 0 AT | 15

2 56 50 63 54
c .
Sos 45 47 34 12
-5

4 R 7 L o571 \

_ i ; - A

5 40 53 as 1oag 2\

! - | 7NN ¢
N

In general there will be, suy, r rows and ¢ mlmngm’.‘jjm' a two-faclor
experiment, cne faclor being examined al + levgl§M ) 4., « « « ) A,
and the other factor B ut ¢ lovels, By, B, - - . "’?}\ The observations
may be denoted by v, ¢ = 1,2, - - -, 7, and\J = 120 e Ttis
assumed that the zy; are random in(]epengfmﬁ‘.%;h.-:erx-n tions from novmal
populations with {he same variances.‘n‘xﬂ-‘ 13 fwrther assumaod that the
eflfects of the two factors are additighg® This lust sanvnption will be
discussed further in Secs. 6 andy§s Analytically it states that the
means of the normal populatien hasociated with the individual eells
are assumed to be of lhe fo;jfﬁ:'

N" Ee'j = E + o ‘+" 87' {I‘)
with \ :
N Zw =0z =0 @

The parameten® J¥ the average of all the populaiion meang.  In terms
of the illugtfabive example, the most skilled workman sill have a
positive enfissociated with him, and the assumption (1) states that
whateyer machine he works on his production will be exactly o (0
the papulation mean) larger than the mean production of all workers
Lo that machine. Or in other terms, if one workman is 10 units better

\thén another on one machine, he will be ten units better than the other
on all machines. Similaily if one machine is 10 units better ﬂ}ﬂ»ﬂ
another, that margin is assumed to be the same (in the population
means) regardless of whether a workman is good or bad.

In the general two-factor experiment, the two null hypotheses of
interest are o = Oand §; = 0. (In the illustration we are using there
is, of course, little interest in the a's.) Wo shall therefore ¥ to
partition the total sum of squares into parts, one of which involves the
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a;, snother vhe & and another £, The proper procedure is suggested
by the estimators of these parameters, which are readily found to be

P _ 1
Eﬁ$=,;c.$f-:‘ (8)
b
- -1 -
ﬁ,-=x‘-_—:c=52xg,-——x {4
2 .

P T 5

i b x“—;,’z Ty — & ()\

;. being il mean of the observations in the ¢th row and #; theom:e‘&h
of those in the jth column. The total sum of squares may(Be" par-
titioned as [ollows: (»’f;'
Yw—t—a—B)t= Yl — 5~ B+ L EEE )
1y i ¥
+ (Z; - F —\i?lf) + & - HF 6
- €N,
= Z (o — & — 85 T I+ 82 (#, — % _%12
ﬁ\? ‘. % }
+r Y g SE = gt @ -9 ()
PR\
Bquation (7) is obtained by squasing the expression in (6), using the
grouping indicated by the pa;jenthieses; then it i easily seen that the
eross-product terms sum to Zero.

ANALYETS OF VARIANCE Fok\ﬁﬁv’é»mc'ron ExrRRIMENTS WITH OKE OBSERVATION

rrR CBLL
: ~’\:'x“ Degrees of . r
Houren ; w} 1, of squares frie dom Mean square ratio
— :"\l.
\ N/ E
Mean “s ref? = 8, 1 8 = 5 S
.__-:T\;:.ﬂ_ —— — .
A@t.~ oY (F — T =8, r—1 = .
- — ! - j—_ —
o S b s
8 effsct r E (@; — & =8 | e =1 patu il S
:“ - —_— | —
—_—— e ———————— — - ——
Tevi- _ o _ ol S
ationg g.a (@s; — &, — & +E)F = Sa|(r — 1e RIS s
Total E 2t re

! iy . i
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If we had some relatively advaneed techniques uf our disposal, the
analysis would now be virtually complete, for rhen {6 wonld be possible
to argue that the four terms on the right of (7Y are cueh independently
distributed by chi-square laws (on division by s%—the first with
(r — 1){¢c — 1} degrees of {recdom, the second with » — 1, the thin
with ¢ — 1, and the fourth with ene degree of freedom. Assuming the
truth of this statement for the moment, we iy construet the tahle
shown on page 331,  The F ratios in 111(\ fival columin give arthogonal
tests of three null hypotheses: £ = 0, @y = 0. 3, = 0, )

To demonstrate the validity of the above wilvais, we mudh in\vesti-
gate the tests morve formally,  Agnin the generd theoryCof testing
linear hypothesges will be employed,  Lquation (1) mawhe puL in the
form of a linear regression function by defining ol O w JI(\ parameters

&; and ¢ s0 that ,~.'
0
8 =1  if g has ¢ 200 ®
= otherwise )
. N
€; = i if Xy }}EQ_?' = (9)
=0 othgrwise
Then (1} becomes s.’{;
£y = Ev +§: s - E, &8, (10)
This relation involves mﬂy 4+ ¢ — | purameters in view of conditions
(2), s0 we shall ehmknatc e, and g. from (10} 1o zet
s{ = £ 4 35 — S + e - e, (11)

and ag in Seﬁ -’1-, new observable parameters are defined by
N\

&p ..F'Q‘“:‘L'f iy has ¢ = i)
"\.f‘f: —lifxg,-hasizr = ],2. o
~\J = 0 olherwise
; - .
N\ p=1ifzzhasj=p —r+1
= —1lifgzhasf=c¢

r— 1 {12)

1

p=7rr-4+1 Ty
r4+e—2 {13

(14)

= ( otherwise
z'r+c—1 = ]-
There are thus r + ¢ — 1 observable parameters: the first # — 1 8¢

asgociated with the «’s, the next ¢ — 1 with the 3's, and the last on®
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with £ The population mean is now of the form

r4e—1
fplp {15)
p=1
if we redefine
B; = 1y j:]-az;"'yc__l (16)
. E= ype—1 (17)
Th{; dp are given by equahnnb (3), (4), and (B), and &7 is readily sofn
to be
g° = (xa:' E“?zp) A \»}
QO
2
~ S‘(a:u S‘a,a—?m—é)\ (18)

1

= ;E {zy — & — T+ x)’x:\\
RV

The joint disizibution of the @, is normaljwith the matrix of the quad-

ratic form defined by A Y
TY s“ (19)

dpe =, E{ngqsa
* d.‘.l

3
S

and on evalualing thesc sun{s using (12), (18), and (14), it is easily
found that

!32(: c\} .. €0 0 0 0 30
F> e ... €0 00 0 0
) 2% L1 co 00 0 0
”\t\sl ; E . :
\ov’ e © c...zcio 0 0 ... 010
\/ o o 0o ... 02r r F ... T 0
0 0 0O 0; r 2r 7 0
0 0 0 o r T 2r r 0
g 0 0 0 r r T 20 0
0 0 0 00 0 0 0 ‘re
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There are 7 — 1 rows and columns in the upper left-hand block, and
¢ — 1 rows and columns in the block completely vuclused by dashed
lines. The fmm of ||z shows at onee that the three sets of param-
eters (&1, &2, * * © , &r1), (B, Bo, - ,Bees), and () are indopend-
ently distributed; hence their quadmhv forms

r—1
Z i@y ~ (@ — av) (21)
=l
ce—1 . . A
E 1.4, r---1+_1"()'r3_,' — .8}'> (.i:f‘:f - IE'J‘J{"} a (22)
igft=1 "\“\

re(é — )* O @
arc independently distributed by chi-square luws yv}#!?’ r—=1¢-1,
and one degrees of freedom, respeetively. MM ree of them are

distributed independently of

\J :
D= — e — 1)

red? [which hag 7¢ — (r — 1) — (¢ — 1) FA
\ degrees of froedom]

A

in view of the results of Sec. 13. 5. % Fflec.e ithree forms veduce directly
to the last three terms of {7, hqnce the F rtins of ihe analysis-of-
varianee table are all of the fmm (13.6.6).

14.8. Two-factor Expemnents with Several Observations per Cell
To continue the 1llust1a1;mn that has already been wsel, suppose again
that there are four u{dq of machines 1o be tested with five men and
also that instead df one each of the machines, there nre three each.
Every man w orlgs one day with all twelve machines, and the data are
classified aggifin a 4 X 5 array, but now there are three observations
in cach cellngorresponding to the three machines of cach type.

In gen@zﬂ we shall suppose that there are r rows and ¢ columns and
that there are m observations in each cell. There will T’hen be reim
ObS(‘lWatIOIlb altogether which will be denoted by 25 (£ = 1, 2, o h

1,2 - - s e k=1,2 - m). The o _)."_w(-.[\th](}DS in .the
(z, 5} cell are assumed to be a random sample from a normal populaf&lon
with mean £; and variance o2, the same for all cells; the cell populations
differ only in their means. 'I'he numbers £; may be puf in the form

Gi=t+ o+ 8+ vy (0
with
Ja=0 28i=0 Yyi=0 Y4;=0 (2

o
® I £ 7
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To do thig, one first computes

f-‘—%;&i

“"=%25€:‘_§ 161":%2&:‘_5

and finaliv, the v, using (1). £ is called the mean effect; the o; are
called the main effects due lo rows, or briefly the row effects; the 8; &re
called column effects; and the vy ave called the row-column a'nt(gmgt@'on
effects, or sitnply the fnteractions. When the interactions a;‘e\'a.'[hzero,
the means &; arc sald to be additive (sce preceding section) ™

We shall now parlition the sum of squares into pa,{'{é”é'u.it-able for
construciing tests on the main effect, row effects, co{mn effects, and
interactiors. Considering first the observationgJua single cell, the
sum of squares may be divided into two pz}gs: just as was dome in
s P Fi ity . ny
eguation {3.0): L€

Y (e — £ = D, (@ =, Bt o+ B(Ey. — £)? (3)
p TN .

then

where & = the cell mean and ig\the cstimator of £;. The sum on the
right of (3) has & — 1 degreeé “8f freedom, and the other term on the
right is independently .di‘é:t-ribut-e.d of the sum with one degree of
ireedom.  Summing (3;( over all cells

E (ﬁ?iﬂ: \—Eu)z = E (i‘sr‘k - 5_51':'.)‘3 +m Z (ii:r’- - Eif)z (4)
(21 O ik i

the total ifl'i.‘}"l: of squares is divided into two parts indep_endcntly dis-
tl‘ibutedsih, chi-square laws {on division by ¢%), the first with re{m — 1)
deg}‘ e\(;s"?_)f freedom and the second with e degrees of freedo;n. The
seoond sum of squares for the cell means may be partitioned into four
Pagts just us was done in equations (5.6} and (5.7} for the case of a
singlo observation in a two-way table. The result 13
: i T T T AT

mz @y — = o — B — va) = mz (Fy — T — Fi. T is)

4 g

TmeY (#.—F - a)? mr Y (Fn — E BT mre( — £ (5)

T & _

The

which diffors from (5.7} only in the appearance of m and ¥ip
336



$14.6 EXPERIMENTAL DESIGNS AND THE ANALYSIS OF VARIANGE
symbols Z;.. and ;. are the row and column means

e 1V L1V,

it - by,
me Lo v L
ik i
I v I
Ly = — \f T = = S Eij
My e T
ik i

while & represents the mean of all the observations,

{t Iz now apparent why the population means wore assumed to be
additive in See. 5; the first term on the right of (3) cormesponds bo the
deviation sum of squares in (3.7}, and i the 4 were nal 2, “it would
be impossible to carry out the tests deseribed there, boatwse the vy are
usually unknown puarameters.  ITowever an ulternafise model to be
deseribed in Sec. 9 allows the tests of Sce. 5 10 heapade in ANy easc.

Relurning to the present problem, the total su)'sng’f_n" zrpuares hug been
partitioned into partz which may be exhibitadNe in Uhe ACCOmpanying
table. The degree of freedom correr‘\]:)orxu@),‘g Lo £ Los heen omitied,
as it often is in such tables, because, ghere s practically never any
interest in testing the null hypothesisthal £ = 0. The three # raties
in the final column of the t:a,hle,miry be used 1o test the three null
hypotheses: a; = 0, & = 0, '}r;._.;}’:—' 0. These are the aporopriate tests

al
] Ny |
. X ® Degrees of i
Souree B of guntes e of alesn square £
ireciloom !
™ H
£\ ) : . —_- —
) \ N 31
_ =0 myt — L it .
Row e Z (?9 \ E) S T ! ol LN n
. |
v, Q_‘\
Column MmNy (5.5, — BT = &,
oY) (s = P2 = 8

. N 7N
JONY

N\ - . .
lnierac:tio} mz (F:, — &0, — 5 4 )2 = & ;
7

&« T
S

7
7 —_— . —_ —_— —_—
"ﬁ;’.vi'ﬁ..tians 81 (Tije = £if)? = &4 ; relm — 1) _ = &
\ 3 iy T J' i relm - 1)
fik H -
R e . I —_—
Tatal Z (Tipe — 22 [ rem = 1 .5

i | .

for these three hypotheses under the theoretical model used ber®

Actually in practice the row cffects and column cffcets are rarelf

tested in this manner. Ordinarily the two sets of main effects ar®

tested by the ratios s1/s; and sa/s;.  These tests do not make sense I
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theory with ihe present model if the yi; are not zero, for then it is

m Z (B, — B — Fj. + T — )t
i

which hasg ihe chi-square distribution, not the quantity S in which the
i have been put equal to zero.

The rationale for ecomparing main cffects with interaction rather
than deviations in an I test may be indicated as follows from a purely
practical standpoint: Using the men and machines illustration,
suppose the null hypothesis, vy = 3, is rejected.  The implication is.
that while one man does better on onc machine than another man
he may not 4o ag much better than the other on a second machingér he
may cven do worse. Suppose theso interactions between nfénand
machines ave of the order of 3 or 4 units produced per day,~Jt would
be quite surprising, in view of such interactions, if tl;e'jﬁlaiﬁ effects
were not at least of this order (3 or 4 units per da.yJ{\\ln fact, the
vanishing of the a; or 8; in the face of nonvanishibg\y; would rightly
be regarded as a pathological case. Suppose théws; (the main effects
due to machines) are, in truth, of the same ordér of magnitude as the
interaciions, Then certainly the differeiiess between machines are
of no practical consequence, for onc Jaight purchase what appears
to be the best machine only to have ig'operated by a man who does not
happen o work so well with thdt machine, and better production
might have resulted had another Machine been purchased, Obviously
machine diflerences are implrtant only if they are large relative to
the men-machines inter Lc@oﬁs.

Arguing very eruddly now, the sum of squares Sy in the table is a
measure of the “yarjance” of the §; since

A X
3 3 A —_ -
o N\ Bi=%; —7F
:"\§¢ .
and S is a, ‘%ea.sure of the “variance' of the vy since
&
A Y By = By, — T, — T4 4z

The ratio 82/35 measures the relative sizes of thesc “yariances,” and
if thé ratio is large (relative to unity), the machine diffcrences are
important in relation to the interactions. These rough considerations
will be made more precisc in Sec. 9. . )
147, Three-factor Exzperiments. To aungment our lliustra.tn‘fe
examplo, the products of the machines in question may be m ade.; 1w
several different sizes, and for purposes of the experiment threc sizes
may have heen seleeted for inclusion. There would then be three
337
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LATIN AND GRECO-LATIN SQUARES 814.8

factors: machines at four levels, men at five levels, sizes of product at
three levels. The observations might then be arranged in & three-
dimensional 1able with 4 X 5 X 3 = 60 cells, and if there were three
machines of cuch type, there would again be three observations per
eell or 180 cheervations in all.

In gencral, let there be three factors A, B, and € with levels i, 7, 73,
respectively, aud let there be m observations per cell.  The observa-

tions mav be denoted by Zags, where k=1, 2, » -+, ;1 =1, 2
corsd=1,2 -, rgk=1,2 +++,m The observations

are assumed io come from normal populations with means Euiz( and

variances «°.  The means may be writben in the form R\

Ny

Foy = & A an + B vt S e Ty g (1}

where anv lutter on the right sums to zero on any oné ot ‘its indexes.
‘The 84, €, {2 uve called fwo-faclor interactions, or firgteovder interactions;
the s ave called three-factor Tnteraclions, or SECORL Sorder trteractions.
The details of partitioning the sum of squart ‘4re 8o similar to those
of the preceding section that we shall mexcly present the resulting
analysis-of-variance table here. The )méaﬁ squares are obtained by
dividing the sums of squares by theit gorresponding degrees of freedom.
The various null hypotheses (aal= 0, o = 0, ctc.) are tested by
dividing the appropriate mean éqiia,re by the deviation mean square
and comparing the result withithe critical F value. Here again, most
of those tests would be pdiptless in many practical situations if some
of the interactions wese Tehvanishing.

If there jg only onéwughservation per ecll, there will be no deviation
sum of mpiarcs, aftd“it is necessary to use the three-factor-interaction
sum of squau}\’ir}\’:[ts place. With the present model this substitution
requires thg\desumption that the s are zero. .

14.8. Latin and Greco-Latin Squares. Latin and Greco-Latin
squargsive devices for reducing the scope of experiments which involve
seferalfactors and for performing experiments when it is impossible
to O¥tain observations for all combinations of all levels of the factors.
As an illustration of the latter ease, we may alter the example already
wed. Suppose four kinds of machines (one of each kind) must be
tested in onc day and that a man must work ab least 2 1‘r10urs on a
machine in order Lo get an adequate measure of his production on that
machine, The &-hour working day will be divided into four 2-hour
periods, but now a third factor has entered the experiment because the
time periods differ, at least to the extent that the workmen may be
expected to be less efficient toward the end of the day due to fatigue.
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§14.8 EXPERIMENTAL DESIGNS AND THE ANALYRW OF VARIANCE

We have then three factors: machine, men, and time periods. By
it is impossible to obtain observations for all eombinations of all levels
since, for example, all men cannot work on the lirsl machine during
the first time period.  The diffieulty is met by setiing up the oxperi-
ment s0 that all factors appear at the sume numbor of lovels, Thus,
since there are four machines and four time periods, we should use four
men in lhe experiment,

The experiment is performed by arranging the levels of one faetor
in a Latin square which is simply a square aviuy of lelters simeh that

every letter appears once and only once in ceverv row and\tolumn,
#A
] N\S
d B O i g
. I :‘.:"
cipioaAlne N
—t WV
plo|n, af
plal s ey
I o &

LN
S 3
A

We may identify the four lett.er;:;,\{'_'rt'h the four machines. The rows
and columns are assigned to_the’ other two factore. Thus if rows
refer to men and columns tg)}t-'lﬁe periods, then the sceond man works
on the first machine (1) “during the third time period.  Of course
this design could be uged" for any three-fuctor experiment where all
factors arc at four deyels eacl. Such an experimont would require
64 observations f(%all combinations, whereas with the Lalin square
it can be done with 16 observations; but of course this reduction in
size of the expiriment is at the exponse of precision in the results.

In gen,q@l," let us suppose that the three factors of a Lalin square
have ?‘%éuéls cach und thal the observations are 2., where ¢, J, b = 1
2, 3N, 1, and where € vefers to rows, 7 to columms, and F toletters i
thevsquare. The (£) is enclosed in parentheses 1o indicate that it 1

“Wot independent of ¢ and 7. The observations are assumed Lo come
trom normal populations with the same variance ¢? and with means

Ef-j(f;} =&+ o+ 35 + v (1}

in which ®a; = 0, 28; = 0, =y = 0. Al interactions are assumed
to be zero in this maodel.

If we denote the row means by Z, the column means by 2, and the
means of observaiions associated with the /th letter in the squar®
(the kth level of the third factor) hy Zq., the sum of squares may casily

340



LATIN AND GRECO-LATIN SQUARES £14.8

be partitioned as follows:
E (ziay — Em)® =7 X (T, — &~ e} 47 E (5;— % — B2
i : 7
+ r% oy — &~ 1)* + ) (@i — & — By — Ty + 28)°
: +rE - (@)

All these sums on the right arc independently distributed by chi-
square laws (on division by ¢%); ibe various sums bave degrees of
freedom indicated In the accompanying analysis-of-variance tablad
The degree of freedom for the mean has been omitted from the tables

~

£\
. \J/
= Degrees ol
Hovrce Bum of squares £ %E’ N
{reedpm
— Fat ¥ 4
- AN
Rows ru(®, — It RSN, N
. i . \/
Ceolumns rZ(E; — I)? A1
/
Latters CrZ(Egm — E° N\ v | r—1
_ . X e .
«l - .
Trevvintions iy — & — Ty~ 4?6?1}:"1‘ 28 | r— D —2)
— - R oY —_— - —_
Total ‘ Tlms; — 1T 09 rt—1
\

The three null hyp
dividing the approp

oth

and using the F distefbattion.

P
:1\"‘
\¥\’ ) A« | B8 | Cv D
M}.\\ By | 46 | Da | CB
...\\; v _ I
'\ ~/ Cs | Dy | 48 | Be
Dg [ s ' Ay

If tho number of Jevels of the factors is a p
of a prime number, then it is pos
without increasing the number of observ.
18 an arrangement of r Greek and r
g0 that each Creck and each Lat

<\
=0, § = 0, ygy = O—are tested by

7>
riate Wiean squarc by the deviation mean square

in 1
341
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§14.9 EXPERIMENTAL DESIGNS AND THE ANALYSIS OF VARIANCE

in every row and column and such that every Gieck letter appears
once and only once with each Latin letter.  With such an arrangemen,
four factors may be tested at » levels, cuch using onlsy 42 observations,
while the complete experiment would require v+ obscrvations. The
analysis-of-variance table would be similar to the one whove for Latin
squares; there would be an extra line for Greok letiors laving sum of
squares rZ{¥gy — I)* with r — 1 degrees of freedom, and the error
sum of squares would become

= - - - s Q"

Z (i — F0. — T; — Ty — Ty -+ BF)"

K O\

with (r — 1}(r — 3) degrees of freedom. The ,, rep I_:L.’%(ZE?] s the mesn
of those observations associuted with the Ath Grecighagior,

More generally, when » is a prime or o power of;g.'.\’i;».:-in'x e, 1118 possible
to arrange r ~ 1 sets of r letters in an » X » Hf_{ll'EL}l\tl so that cach letter
of every set oceurs once in every row and cann and onee with each
letter of every other set. By means of .*s‘upb':u'm,n;,{-enu.\nfs, many fac-
tors may be studicd in one experhment. with Telatively [ow nhservations.

14.9. Components-of-variance Mgdels. In this <cction we shall
consider an altcrnative mathemagical model for anaivzing factoral
experiments.  To introduce thegdeas, we shall consider a two-factor
experiment with one obse.t‘\-::ﬂ.f:ib'n per eell, the same siluation as was
discussed in Sec. 5. "[’hg~()l_is'en-at-ions are again denoted by y; with
t=1,2 -, n m{d‘_{ = |, 2, , ra In thix model the row
effects, the columne :ém':%s_, and the Interaction effcets are all assumed
to be random \-’eu'iﬁbﬁé& Specifically it is assumed that

PN\
K7,
where 4 1}2, T,y 18 & random samplo from » normal population
Wit]’L‘II:'L‘('%H £.; the v; ave an independent random sam ple from a normal
popblation with mean £,; and the #yy are an independent random sam-
‘Ple-from a third normal population with meean ..

N\ Altering the circumstances of the experiment in Sec. 5 slightly,
let us supposc that there are s large number of manulacturers of the
machines in question and that four particular males werc chosen aﬁ
random. Also the five men chosen to participate jn the cxperiment
were chosen at random from some large group of men. It is assumed
then that these five men have production abilities w, s, Lyt
which constitute five observations from a nornal population. Sl_m‘
larly the four machines have productive capacitics u, v, 23 Vs which
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constifute an independently drawn sample from & second population.
The variables wy; may be looked upon as a sum of two variables, say
yis + i with the #; interpreted as the interactions between men and
machines s the z; consisting of miscellanecus minor effects which
influence the final observations. These two variables ¥ and z are
assumed to Le normal random variates, and their sum w will then be a
qormal random variate.
Referring back to equation (1), if we let

Em b b Gi=w— &, b=t b =W S
N ¢
) ) oA\
then the erustion may be written in the form o\ b
N/
Ty = Et e+ b+ AL @

" \’\.
where the three variates a, B, ¢ Bow have zero means. %We thall denote
vheir variunces by o7, of, o2, respectively. Clearl{ the mean of any
ri 15 £, snd the variance of any @y 18 \*\\
o =c% F ot + ol ) (3)
R

sinee the Uhree variabes are assumed jt:?a. be independent. It is to be
observed that the i themselves ar&hot independent if they fall in the
same row or column. 'Thus, fof gxample,

2\
‘E[(rll - E) (.’1312 - }'\‘=}E[(O}1 + b+ 011) (31 + be -+ Cl?.)} (4)
N = (5)

which arises from t-h%-_:.\a’fi term on the right of (4). Similarly the covari-
ance hotween t;u(c;, hservations in ihe same column is 3.

Witk the plesent model, the null hypothesis that the row effects are
idemtical tilves the form o = 0. This is to say that the a, x.vhzc.h
bave meﬁ,liwzem} are sctually identically zero; their distribution s
condentraied at o point (zero), which is the only way o can be zero.
SimiluTly the nuil hypothesis that the column effects arc all the same
takes the form of = 0.

To test these two hypotheses, the
as hefore: '

Z (2 — B)2 = 2 (g — %t — E4 45?2+ Tzz (Z. — z)*
if 7 + " Z (5,,’ — .’TZ)“" (ﬁ)

H

) S

sum of squares is partitioned just
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mm which the degree of freedom for # has been omitied. If we substi-
tutc for the z’s on the right in terms of @, b, and ¢, the result in

E (xi — T = E ey — €. —C;+ 8+ ry }_: (o +- ¢ —g— L
i i )

)i —b-ar @
J

where the &'s are defined in the same way a3 the Z's und 4 = a7,
b = Zb/e. It is casily shown that the threc surs on the right are
independently distributed by chi-square laws by using the Yesults of
Sec. 5. The results of the latter parl of that seefion métybe applied
1o the ¢y since these variables are independentiy n_or{nfdt}-' distributed.
{Since the ey all have zero means, the means ary BENAOL Bec. B are all
replaced by zero.) It follows from Sce. 13.5 ;-Lijd equations (5.2},
(5.21), (5.22) that 2(ey — & — ;@2 1y diSI-.:l\}nl'f;n:d independently
of the deviations &, — ¢ and &; — ¢; furtller, the =ct of deviations
. — € is distributed independenily of }lln}s‘et .; — &, a% [ollows from
(6.20).  Also the sum in question when”divided by o has the chi-
square distribution with (7 — 1){rg> 1) degrees of frecdom,

Since, by assumption, the ¢'s akerindependent. of the a's and ¥s, it
follows that tho first sum on the'right of {7} is distrihuted jndepend-
ently of the other two Sll‘m'ii:' These other two sumns are also dis-
tributed independently, since the variables a; and the varables G —¢€
are independent of thcﬁ; (by hypothesis) and the ¢; — & (by equation
20 of Sec. 5). Fwp ‘191"11101‘9,_, these two sums are distributed by chi-

square laws.  Fpr considering the sum (2 + &, — @ — £)*% we may
et 7 ' -
AS -
RS Yo = a; + &,
and xvé\k;i’)m\-' that y is a normally distributed variste with mean zero
and vaxience o2 + (o2/ry). Thus
AN Iy ~ )°
O 7+ o7/

has the chi-square distribution with r, — 1 degrees of {reedom; henee
it follows that the second sym on the right of (7), when divided by
(702 + 02), has the chi-square distribution with r, — 1 degrees of
frecdom. 1In the same vein, the third sum on the right of (7), when
divided by (re? 4 07), has the chi-square distribution with 72— 1
degrees of freedom. All these results may be summarized in t..he
accompanying table., The final column provides the divisors which
make the corresponding sums of squares chi-square variates.
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Source I Sum of squares Degrees of Hxpected mean
Ireedom SqUATe
i{:“’s reZ(E — ) n—1 o + il
EO_];.I:- }_2(553 — E)* rg — 1 a2 + ruf
Deviations I R B -
'.i_"thﬂ.l : Zieij - 5:]2” firs — 1 R .._f\

N
To test the null hypothesis ¢ = 0, one again uges the 1‘at-i,o\' ofthe
row mean square Lo the crror mean square and compares, that ratio
with the critical value of the F distribution for ry — 1 amd™y

PR

(T‘L - l) [:?"g — 1) ‘\\

degrees of freedom. Tor under the null hypothesis these two sums of
squares have the same divisor ¢f; hence 148 unknown parameter
cancels out in the ratio of the two chi squales) and the ratio of the mean
squarcs has the F distribution. The, tests for the row and column
eflects thus take exactly the same j()z-ﬁi' as thaoge of Sec, &, but here no
assumption of additivity is requited. '

14.10. Components of Varidnce for Two-factor and Three-factor
Experiments. For a two-fagtor experiment with m observations per
cell, the observations ar{‘amumcd to be of the form

Sﬁqk = {4+ @+ by 4 ¢ T e (1

where the a’s, &%, g’s, and ¢'s are nermally distributed with zero means.
The o's aresmgsbeiated with row effects, the U's with column eﬁec’f&
the ¢’z wi»\\ﬁ fow-column interactions, and the ¢'s with all other mis-
Gtﬂlaneoi’lrs effects which influence the observations. The Va_ria,nc-es ?f
thesé ariates will be denoted by ok ot 7o and o%; the o7 is used in
Breference to o2 to indicate more clearly that it refers to the populat.?on
of Tow-column interactions. We shall leave the details as an exercise,
sinee they are very similar to those of Qec. 9, and merely present the
results. The final column of the accompanying takfle shows at &
glance the appropriate ratios of mean SqUAres for testing the various
mll hypotheses: for of = 0, one COMPAres the mt‘eractlon mean
Square with the deviation mean square (this is somefflmes ca..lled the
tost of additivity); the main cffects are tested against interaction (not
against deviations as was the case in Sec. 6)-
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Zource Bum of syuares I Degroes of i Fxpocted mea;h
freedom : sQuare
Rows mr.T(F, ~ E)? =1 +- ol 4 Mres?
Columns m-r]E.{.:E_,-_ — £ ry — | '_—-;r_i&_-i—hmrlgg _
Tnteractions ml(iw e TR JEE i LA P {r_-.: H _r;‘ -+ ?'?;3:"__'_‘_
- - ! — —— —_
Dreviations | 2z ~ £:,)° el -1 S £\

For the three-factor experiment, the expeciod mcan qudt es for the

table of Sec. 7 arc: K7,
&/
...\
Souree Iixpected mduh ngnro
_ . ,'C\\" S
A effcet a; + mob,, Falleth, + et b el
B cffcet | o'-f + 'fﬂu'l?ih:‘*lr: ?}Er;{o’:iﬂ =4 H.'.?'-,r,—_;"_, V- H.‘.";.l';-,rré
——a ——I ’. e —_
. b

C effect : a—"’. = nw“ o+ onre 4 on

A B interaction NG —|— m%z + e

i
a
. AN
AC interaction, { Y1 o + mel,, + mral,

5 N ) o —

B¢ interagtipn o + mcrgi,c + mrie,

3
NG .
ABCgriyeraction or + mal,,
AN

N\
\ngc* inlions o
"\

“h(-re g% is the variance of the population of 1 main effects, o 18 the
\v;arlance of the population of the two-factor (A53) interaction cffects,

e 18 that of the threefactor interaction effects, and so [orth. 'Ilh?
expected mean squares for experiments with more than three factors
may be readily written down as follows:  Ivery expected maean square
involves the deviation variance with coefficient onc and ail other
variances which have subseripts containing all the letters corres_Pond
ing to the mean square in question.  The coefficients of these variances
are the produets of the ranges of all indices on the a's except those
associated with subseripts on the variances.
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A very troublesome difficulty is encountered in threc-factor and
higher order components-of-variance models. In the present instance
one obvionsly tests the three-factor interaction against deviations, and
he tests the two-factor interactions against the three-factor inferaction,
but what 15 to be done with the main effects? On putting 62 = 0 to
test the main effect of 4, there is still no pair of chi squares with com-
mon divizers,  If it happens that one of the two-factor interactions is
zero, there ix no trouble. Thus, if the hypothesis ¢% = 0 is not
rejected, then the main effect of A may be tested against the AC
interaclion. N

If neither of the two-factor intcractions is zero, then a thearstially
satigfactory test for the main effeet in question can becorqe}i\trouble-
some matier.  In practice, the following simple approximation device
is ordinarily employed: Suppose it is desired to f€gh'ef = 0. Let
11, Yo Y b the sums of squarces for AB interaction} AC interaction,
ABC interaction: let ny, ns, ng be their respective degrees of freedom;
let ky, ks, i- be their respective expected mgs):squares‘ Since ¥k
is a chi-square variate, the mean and vapiance of y, are ngk, and 2nkl.
Ti i evident from the above table of exbeeted values that the variate

"
Wi 1
p= gl P 2)
f_y o T2 g

has the vight mean value fdrah F test of ¢ = 0, but v does not have the
distribution of & mean sGuere. However, if the n, are large, the shape
of the distributionsof W does not differ much from the shape of the
digtribution of s AMEAn Suare, and the approximate test treats v as
if it did have Such a distribution. The only question remaining is
how many dédrees of freedom shall be associated with . Letting N
be this h\{nber of degrees of freedom, one determines N so tha’t the
Va“'iam";& the approximating distribution is the zame ag the variance
fff th@“actual distribution, The true variance of v is

V ,
Jg=2(ﬁi+;%+’f§) 3)

# i1 ne B3

while the variance of a mean square with ¥ degrees of freedom and with

expected value by 4 ks — ka2 ds

Hl\z? (r’h + ks — -193)2 (4)
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On equating (3) and (4), ¥ is found to he

Ui?l + }i'-'z - fn:;}f

V= (kE/ma) 4 (kB -+ (B3 ) ¥

In practice, of course, the & are unknown, bul they ean be estimated
by the g3 ie., £ = yo/m. Thus the approximate (st for af =01
to treat

mrgra (., — 7) O

N Vi
(r — 1)( ! ﬁ_:_:__"_) A\
Fu £y ,'\\ "

\.
as an F variate with ri — 1 and N degrees of ileed{zm where & is
determined by (5) with the %, replaced by 3,7/, \

14.11. Mixed Models. We are now able.d hivestignte the mathe-
matical model ordinarily needed to analyzeQutu itom “aetorial experi-
ments. In most experiments, the levelddl some [actors are to be
regarded as fixed constants whereas dhedevels of other factors must be
regarded as random variables; hen@tthe requived model must be a
combinution of the two models sieady disenssed.  As an illustration
of such a model, we shall returpito the experiment described in Sce. 6.
The effects of the machinegtwill be regarded as fixed constants, while
the effects of the workmenwill be regarded as u sumple of obscrvations
from some populatlonm(}i workmen,

Using the notatN{n 6f Sec. 6, the ohservations are now regarded as
being of the forg

4 .\ y o =t o+ B; 4+ ri; + e (n

where DOQZ\= L2 -, r;3=1,2, ", re;h=1,2 " ,m
The a-\&re ‘observations from a normal population with zero mean and
varigieé of; the B; arc constants whose sum is zevo (the average
m&Chme (*ﬂect for example, is included in £); the ¢’s and ¢’s are random
thervatwns f1 om normal populations with zero means and variance
clg and o,

The sum of squares is partitioned as before into parts associated with

the various factors:

Z(dyr — I = (g — Zy)° + mS(@y, —~ & — £+ 1)°
+ mre2(Fe. — )2 + mr2(E — D 2
On substituting for the 2’s in the first sum, it becomes (e — 8"

hence on division by ¢? this sum has the chi-square distribution with
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rirs(m — 1) dogrees of freedom.  The second sum becomes
n 2 Jeiy + 8. — (Gt &) — @it e) + E+ 9

and replacing the ¢y + &;. by yy, which has variance 025 4 (s%/m), it
is evident Lhat this term, when divided by me?s -+ ¢%, has a chi-square
distribution with (i — 1}{rs — 1) degrees of freedom and is distrib-
uted independently of the first sum, since the deviations e — &
are indepondent of the g;. Similarly the third sum is independent of
the first two und has the ehi-square distribution with r; — 1 degreg§ ™

of freedom on division by ¢ + mols + mirel. A
The final sum on the right of (2) becomes PR,
\/
mriy (654 8 — & — &+ B N
; K7,

which Is independently distributed of the other sums buit does not have
the ehi-square distribution, Ilowever the quan{@y
§

mri2(Zs. — & — 3{3"‘;\ -

does have the chi-square distribution (dp Qivision by ¢ + msls); hence
under the null hypothesig, 8 = O',.'ﬁl’lé final sum cn the right of (2)
does have the chi-square distribufioh.
The analysis-of-variance table presented here may be compared
with that of Sec. 10. 'i‘hg,%ﬁal column shows at & glance what ratios
4

g (D Degrees of [ Fxpected mean
romee & T nf BUBres freedotn sQuare
4 effect ?”f‘-’_:@{fé” — F)2 rs— 1 & + ma,g + mreg
— —  NNS B I U — _
X LN\ . . mry Zﬁi
B efl'ecl.:(; i S(E — £ b =1 o 4 maly "
:"\ ) o —
—AESA | A
1§3\ intcr- . )
setion ME(E; — B, — Bg |00~ 1)(rg — 1}| oc + maad
e L — ] -
Deviations B(mge — Tip)? rirelm — 1} ot

for testing the various null hypotheses.

of mean squares are appropriate ous 1 :
be tested against interaction, not

The main cffects in both cases arc to

against error,
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14.12. Analysis of Covariance. The analysis of covariance is 8
technique employed in analyzing factorial experiments when the
subject of the experiment is related via a regression funetion to certain
observable parameters. As an example of an esperiment i which
the method would be used, let us suppose that pencimiion of different
kinds of steel plates by 50-caliber projectiles is heing studied. Sup-
pose there are & plates;, one of cach kind, and that projeetiles are
to be fired at each plate. The depth to which the jili projectile pene-
trales the Zth plate will be denoted by 2. Thus Jur we have a one-
factor experiment with & levels and m obscrvations per eell, B\ut the
velocity of the projectiles will be o eritical factor i vhe depthof pene-
tration. We shall suppose that this factor is not of iuterest for pur-
poses of the present experiment; we merely wizh to al e for a fixed
veloeity whether the resistances of the plates ANUor stgnifieantly.
However it is impossible to fire cach bullet sl cxnctly the same
velocily; and in performing the experimenty the velueity of each one
will be measured photographically, and them Use ¢ffeeis of the varia-
tions in velocity will be taken account.{{xflin the analvais of the data.
Let the velocitics be denoted by 25\ The ohsorvations iy are now
assumed to be normally dis‘r.ribut’o;l' with variance #2 about the lincar
regression funetions &Ny

R :::af "+ )'3\'2,;5 (1 J

In the cxperiment just“described, the observable parumeter 2 i
associated with an gxpfaheous factor (veloeily) which evunot be entircly
eontrolled and mp@&\be dealt with in the analysis of the data. In
other experimenfsthe observable parameter may he associated with
a factor of inbefest. Thus in the above cxperiment we may desire to
study the £%6 factors—type of plate and velocily—und might vary
the vel it\feé over a considerable range.  Bul in this lutfer experiment
the SLM’} ¢ linear regression function might not be adeguale, and we
shadli Yestrict our illustration to the simpler sttualion. In more

"él;zxﬁoratc experiments, there may be several obscrvable parameters
\corresponding to each of several factors for which it is impossible or
Inconvenient to assign specific levels. Ordinarily, when it is possible,
factors are studied in experiments by assigning to them a specific seb
of levels rather than an observable parameter, because the analysis of
the resulting data is simpler, ' .

Returning to the illustrative example, we have a two-factor experr
ment M a one-way classification. One factor (lype of plate) 1
assigned specific levels which form the one-way classification, and the
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ANALYEIS OF GOVARIANCE §14.12

other factor {velocity) is represented by an observable parameter 2.
The dats consizt of m& pairs of cbservations (zy, 2;) with ¢ = 1, 2,
e handi =1,2, - - -, m. Wewish to test whether either of the
{aelors affect the subject (depth of penetration), and in particular
whether tlie plates differ when eflects due to differing velocities are
removed, '

The aum of gquares of deviations from the regression function for the
shacryations in a single cell may be partitioned just as was dene in
(2.5) to oblan _ O

E (g — Bzt = E (r — & — Be)? + (B —.36)22 (3€f:{%5)\2
; i « N/
+ m{Z;, — as"":’gs?i.}z (2)

J
where the sums on the right are independently dj,st?ib\ﬁt.ed by chi-
square lavs {on division by ¢%) with m — 2, oneNgnd one degrees of
freedom, respectively. If now (2) is summedsgn, the total sum of
squares will be partitioned into three parts,ifdependently distributed
with k(m — 2), %, and k degrees of freedomyrespectively. The result

iS . W

~

}:, [\.L, — IS\'z‘j?‘)? = Z (3,’.7?' —’é':;';"—:‘aiza'j)ﬂ + Z (lém - Jﬁi)ﬂ(z\'f - 2;.)2
o . N i

Lt £

,,,\ -+ m E (%, — ar — 850 (3)
¢ \J i
.\\“0'

We shall first investigate the hypothesis that the slopes of the
regression lines a;ne\'fhé same for all cells. To this end we write
P Bi=8+m 0

NS

and thegiull hiypothesis then may be put in the form v: = 0. To test
t'hif’l\h?fjéf hesis, the middle sum on the right of (3) iz to be p.artlt-loned
iflo ¥Wwo parts: one with & — L degrees of freedom involving the v
and the other with one degree of freedom involving 8.

If we let .

w; = Y (2 — B {5)
7
erm on the right of (2) that B is

variance o2/, Furthermore,
If their variances werc equal,

then it is apparent from the middle t
hormally distributed with mean 8 and

the 4 ure independently distributed.
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§14.12 EXPERIMENTAL DESIGNS AND TIIE ANALYSIS OF VARIANGE
one could partition Z(3 — B8:)* directly inio S8 — i — 8)? and
B — 8)* with & — 1 and one degrecs of freedom, but this is not the
proper procedure here (see Proh. 23 al the cnd of Chap. 12). The
deviations of the 8 must be taken not from their simple average hui
from their weighted average, say

-3 zwiéi
B == (6)
2 i
0 ~
Furthermore, 3 in equation {(4) must be similarly defined S0\that the
v: represent dJeviations of the 3; from O\
B = 2‘;‘%:3‘ ) e \ (7
Hy ,"‘.\\
Now the middle term on the right of (3) ma\y Me partitioned thus:
9.\l

Y — p)r = 2wl — oeSWY + i —
i ¢ MY
= E wilf A% — B+ 3 - 8 }: i (8)
since the sum of cross-produt® terms vanishes in view of (6} and (7).
1t follows from the resultZdf*Prob. 31 of Chap. 10 thas the two lerms
on the right of (8) areiin\dependcntly distributed by chi-square laws
with &£ — 1 and one degrees of freedom, respectively. Under the null
hypothesis, v = (hthe first sum on the right of (8) with the first sum
on the right of ¥ determines an F variate with & — 1 and k(m — 2)
degrees of fl'(::édbm. The other degree of freedom on the right of (8)
provides E\h\oft-hogonal test of the null hypothests, 8 = 0. _
Tulznﬁl\g, to the third sum on the right of (3), we sheuld like to parti-
tion.dtiSo as to get an appropriate test of the hypothesis that the o
{B w1l equal. Unfortunately this is not possible unless the 8 are all
zeto.  However, it Is possible to partition the sum to get some uselul
information about the a;, particularly when the 8; are cqual,  Onc sets
up the null hypothesis,

B(E) = a + #', )

which states that the ccll means (5., 2.) fall, within cxpmjimentsél

crror, on & straight line; the nature of this hypothesis will be dt’scllﬁse

further below, but now we proceed with the partition. The third sum
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ANALYSIS OF COVARIANCE §14.12
on the right of (3) may be written
mz (B — a — £'2,) — {ag — a} — (8; — 8)%]*

=m E (Fi— 8 — a— fE)2 (10)

whaore

& = ( — o) + (8 — 892

Regarding the #. — 6; as a new random variable, say #;, the sum of

squares on the right of (10} may be formally partitioned just as s

done in equation (2.5) to get _ O\

mz (B, — & —a— 37, = -mz (T —8 — & — &'5)® . O

(B — 82 Y, (& = 22+ mk(E — 5~ B (11)
\"

in which, referring o equations (13.2.8) and (13,29} wc have

< N\
& =T — 5~ [z ‘O (12)
gy = 2@ =8~ EHBE - D) (13)

(& < B

and subseripts § have been put Qn::j:hese two estimators to indicate
that they are functions of thewinknown paramecters 3. Under the
null hypothesis that the E(Zg)are linear functions of the Z; (i.e., that
the 6; = 0, these two eslirators become

P {
No?

S o= T — B | (1)
:‘1\..,‘} "o 36 _ u(.ﬁz(—éa—-ﬂ)_(zé) 2—'_3) (15)
(N

the Ot’dinaa.fﬁ{}égression coefficients fitted to the points (%, %); they
are ther;ef{;ha called the regression cocfficients for the cell means.
The\t’lff‘ec terms on the right of (11) arc independently distributed by
C@;"‘E‘;mill‘e laws on division by o, the first with & — 2 degrees of free-
dot’and the other fwo with one degree of freedom cach, i‘he null
hypOthcsis} 8 = 0, would be tested by putting & = 0in the first tfzrn1
on the right of (1) and comparing it with the first term on the right
of (3) in an F test. ‘The nature of this mull hypothesis is lustrated
on the loft of Fig. 67, where the solid lines represent within-eell regres-
sions with equations z = &: + Bz, and the dached line 1‘eprcse.nts‘the
regrossion of cell mesns z = & + A. The points on the solid lines
are (%, 2:), and the null hypothesis states that the expected values
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§14.12 EXPERIMENTAI DESIGNS AND THE ANALYSIS OF VARIANCE

of the vertical deviations of those points from the dashed line are
zero. Rejection of the null hypothesis is good evidence that the cell
parameters differ. Tlowever; as the right-hand sraph shows, the cell
means can be linear, and even though the within-cel] slopes are the
same, the a; are diffcrent.  That is, one can accept 8; = 8 and & =0,
yet it does not follow that the «; arc equal.  ITowever if 3" = B8, then
1t would follow that the «; were all cqual.
x T AN
/
/ Ay,
el /
B e

Pt
2]

}(s,/“‘a
/&.‘
a, v

~—
-
-
\\
Z Q) Zz

Tia. 67"“ Y

Asguming now that & = 0 ;1,1‘1{1’ B: = § are acceptable hypotheses,
let us construct a test for thewnull hypothesis 8 = 3. The random
variables f§ of equation (8)and &, of equation ({1} (putting &, = 0) are
independently normally, d:'rﬁlributed with means 8 and 7, and variances
o/ Zw; and 62/mE(Z502)0.  Their difference jx therefore distributed
normally with mebn 8 — 8 and variance equal fo the sum of the
individual variggegd. TIlence

B 0 T_:;Og"'_ 82
o 1:_\1‘—';* . = 1'—. P
IyyN mI(E — 2

8

.\\' - [__ éyﬂ ___(8__ .'8’)]2 oy 7, — E)* (16)
Q ng(zﬁ_ Y mz zz(z,_

- A

B—6

has the chi-square distribution with onc degree of freedom. The
weighted sum of § and §,
Swif + mE(E ~ 528 (17

is normally distributed independently of 3 — 3} [it is nccessary or.ﬂ}'
to show that the covariance between {17) and 8 — @} is zero} with
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ANALYSIS OF COVARIANCE §14.12

mean 2w + mZ(z:. — £)%3 and variance ¢*2(z; — 2)2. Thus

[Zwil8 — 8 + mB; — )2 ~ B

2 = 2)°

(18)

hug the chi-square distribution with one degrec of freedom and is
independent of (16).  If the hypothesis 8 = 8 is acecpted, then (18)
provides = lest of whether their common value is zero. The two
independent degrees of freedom corresponding to 8 and 8 in (8) and
(11) have been transformed to two other independent degrees ofy
freedom {16} and (18). :

The complete partition of the sum of squares is exhibited in:th'e
accompanyving table, in which all parameters have been put :g{guaf to

zero.  We =hall roview briefly the various tests: Y
7
. Dgerces of
Source Surn of sguarcs fraedlom
e AN
Y ” .\.‘
Deviations | E (mij — & — i) o~V E(m —2)
Lo \/
3 -3 2 {zij — ?L)%ﬁ{{“ﬁ)z E—1
] N |
Sy m Yy, (B, e — i2:) k-2
¢.< E‘u} at = =8
}g{‘(\ﬁ — Gt E w;E (Z — )
g—-p O— L 1
& Te
£ ) i
oY | _ - N I
& . - T2
\ Y4 3 wy - om, E (e — z) J
§_ ., [ Ea: A
M”}j =4 E{zgf‘“ﬁ}ﬂ
o\\:\ : ¥ i
Total 2 (@ — E)° ko =1
£

1. 8 — 8 = 0. Tf the regression lines for the individual cells all
have the same slope, then the second mean SqUAre (sum of Squaﬁeﬁf’
divided by degrees of frecdom) divided by the first mean square ??
the F distribuiion with & — 1 and E(m — 2) dogrees of free?ntl.bofh
this hypothesis is rejected, then it is concluded at once that 0ot
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§14.13 kXPERIMENTAL DESIGNS AND THE ANALYSIS OF VARIANCE

factors affect the subject of the experiment, for if the regression
coefficients differ, at least one of them must be different from ZEYQ,

2, 8; = 0. The third mean square divided by the first mean gquare
has the F distribution, whether or not the f; are equal, when the eel]
means are lincar,

3. 8 — B =0, The fourth mean square divided by the frst has
the F distribution if # = 8/, only il it is true that 8; = 8 and i =0,
One would not make this test if cither of the first two nall hypotheses
were rejected.  IF all three of these null hypotheses ave accepted, then
it is inferred that the factor corvesponding 1o the discrete c:lass%ea.-
tion does not affect the subject of the experiment (the as aswell as
the 8; are the same for all cells). NS ©

4. =g = 0. This test would be made only if all Ahree of the
other null hypotheses were accepted.  If this fourt-h'ﬁu]fhypot-hesis i
accepted also, then one Infers that neither of llu.f\ﬁvo fuctors affecis
the subject of the experiment. \4

In many experiments there would be no thiepght of making all these
tesls; the primary object of the cxperin"g()f{xthmight Iy to egtimate the
regression cocfficients, it being well kndwwin advunce that both factors
influence the subjecl. In such cases ore would ordinarily make only
the first test, in order to decide whether the same slope would suffice
for all cells or whether a separate slope should be corn puted for each
cell, N v
14.13. Analysis of Adjugted Means. Theve is onc other aspect of
the analysis of covariantd thal needs o he discussed.  We may refor
to the illustration at b beginning of the previous seciion. Suppose
it is found that hoth? factors affect the penetration: he oy and 8 are
different for thendifferent plates, but this was 1o be expecled anyway,
and these resl$s’are of minor intevest. The real question may be, Do
the pl&t-CS\:(i}ﬂél' m their resistance for velocitics 2 = 27 (Thug
may bq"}he ordinary short-range veloeity of B0-caliber bullets.)
Admittet that some plaies may be particularly good for very high
Elupities while others may be hetter for low velocitics, how do they
rawk at the velocity of real interest? ,

Using the notation of Sec. 12, the cell means %, correspond to velock
tieg 2, ; in fact

T.o= & + Bz O
With these regression coeflicients we estimate that the cell means
would have becn
=& + éfzn =T, — 3(& - 2g) 2)
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ANALYSIS OF ADJUSTED MEANS §14.13

if all the 7. had been equal to 2. The y; are called adjusted cell means,
and we are latevcsted in testing the null hypothesis that the expected
values of the adjusted means are the same for all cells. The y; are
independently normally distributed, as follows from equation (12.2),
with variances
. 1 1
- 3 o5 2

e [m T E W ] (3)
and with means which may be denoted by 4. Sinec the variances of ™\
the y; arc different, wo test the null hypothesis 7 = » by usingihe
weighted sum of squares of deviations from their weighted mea,n\', ‘ay,

. _ Z(yi/ed) &N
V=305 o W
* LV
just 25 was done in the preceding section in testing the'B..  The sum of
squares is : PN
1 s §)*
(@ 9) (5)

.
o 0 =0 = 5 ) e —

which huas the chi-square distributii’f!fﬁth F — 1 degrees of freedom
when the 5: arc equal and which :.ig,’fdistributcd independently of the
first sum on the right of (12.2). “Thus we have an I tost for ;e = .

I the frst null 11yp0t-g&$‘i5, 8; = 8, of the preceding section iAs
accepted, Lhe 7, are agjsted by the single regression coefficient 3,
and the adjusted means ‘afe

7N '\”:’: " y‘; = 'E{' - 'é(é‘l - zu) (6)
The variangesdf the y; then become
O L -
.M:" 2w gt | — — & 2 :
AN v =0 [m + S (. — ) ]

a\Y
arh\ équations (4) and (5) are altered aceordingly. In this case the
sum of squares for the denominator of the F test is often ‘_c-akcn tq be
the sum of the first two sums in the table of the preceding scotion.
Thus the deviztion sum of squares would be

Z {2y — & — Big)® + 2 wilBe — By = E (B — & — Priyr B

i

with km — &k — 1 degrees of freedom.
367



$14.14 EXPERIMENTAL DESIGNS AND THE ANALYSIS O VARIANCE

In testing adjusted means, one would ordinavily choose 2y =3
unless there was good reason for not doing so.

14.14. Notes and References. The general field of cxperimental
design was first thoroughly cxploved by Fisher, whoze haok [1] remaing
today the most important treatment of the subjeet. It was originally
published in 1935. Yates [2] has introduced many valuable new
designs. The tables of IMisher and Yates [3] describe maost of the known
designs und give instruclions for using thom.

The analysis-of-variance technique is also due Lo Vishers {Fisher
used the test criterion )4 log F orather than I in his deyclobment.
The latter version of the criterion is due to Snedeeor, wha Nmed it 7
after Tisher. An excellent presentution of the praciioed aspects of
experimental design and analysis of variance may b Thund in Snede-
cor's book [4], a large part of which is devoted tailb~c <uhjects.

We have given in this chapter merely the hayedt inf roduetion to the
subject. Only the simplest designs have héen' considered, and they
have not been {ully analyzed. The totglfum of sonaves may be
further partitioned to study individuglteffects of faetors and to study
the linear, quadratic, cubic (and so f{jﬁt‘ﬁ) components of faetors whoss
levels are chosen values of a conlititolis vuriate,  Also the analysis was
mueh simplified by assuming,qu’uél numbers of observations n the
cells.  When the ccll frequemﬁes are not equal, the anulysiz becomes
much more tedious (except in the case of one-way clussifications),
primarily because t-he"g-es?bs heeome nonorthogonal so that aimple sue
cessivo partition of thevtotal sum of squares is no longer possible.  The
analysis of covarignce can become quite difficylt for more elaborate
designs and mere’eomplicated regression [unetions; we have dealt only
with the simplest case.

Most egpefimental work today is based on the rule: “Keep all
Variab‘lgfs}cbnstant but one,”’ an ancient and erroneous dietum which
gua;‘z;gitees a high degree of inefficiency., One well-designed experi-
m‘?m” taking account of all relevant factors, is worth dozens or even

\hu‘ndreds of experiments which study one factor at a time keeping the
others constant,

L R. A. Fisher: “Design of Experiments,” 4th ed., Oliver & Boyd,
Ltd., Edinburgh and London, 1945, N
2. F. Yates: “Design and Analysis of Vactorial Fxperiments,”
Imperial Buresu of 8oil Science, Harpenden, 1937. )
3. R. A. Fisher and T. Yates: “Statistical Tables,’”’ 3 ed., ITafner
Publishing Co., Inc., New York, 1948,
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4. G W. 8nedecor: “Statistical Methods,” 4th ed., Iowa State Coll
Press, Ames, 1947, ’ ’ ate College

14,15, Protlems

1. Test for differences between machines using the data of See. 3.
The compriiations are usually casicr to do if the sums of squares are
put in formse which do not employ deviations from means. Thus,
when the »; are equal, gay n: = m, '

O\
2 gy — 5:)° = E:rg = %‘Z X;,a_

7

- 4
where A = ¥ x5 and X, = E Tij.
i

7 &
2, Use the data of See. 5 to test whether mach*fﬁ? effects differ.

Note that \
7 N
'._?'!_1 ' 2;_.1 72 \' "">\;2-—1 2 1 2
GE(&'.‘L T _FEX‘ EA TZ:(@‘::“: SC) _;EX?—%X

and that ihe deviation sum of squarce ﬁ]’&y be obtained by subtracting
these two sums from £z} — (1 /rg}?{?f

3. Referring to Prob. 2, finda 95 per cent confidence interval for
the diffevence between the ci{écts of the first and third machines.

& Vour varicticd of ohts were compared on 2 block of land by
dividing the block intg I_\f‘)\plots and using a 4 X 4 Latin square {chosen
at random) in order o take acecunt of possible fertility gradients in
the sail,  The resﬂi‘ti’hg vields in pounds were found to he as follows,
where the int ."e}é‘ 1, 2, 3, 4 refer to varieties. Test for differences
between ve ':‘tjr offects.  Was it worth while to use the Latin square?

2 &

ad
NS

~O° 3| 4y 2|1
\ Yy 47 | 40 { B0 | 57
| 11 3| 4

40§ 53| 37 | 29

4| 3| 1] 2

ag | 84 | 46 | 37

1] 2| 41 3

48 | 44 | 25 | 30
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6. Analyzc the following data taken from a much larger table:

Rerain PricEs or Bresp

|
New Yorlk Chicapgo " Toz Angcles
Chain stores and super- i
markets. ... 14, 15.5, 15, 13 14,13, 11.5, 13 | 15, 16, 14, 13.5
Supermarkets (not ’
chain). ... .. S| 1405, 03,12.5, 18 | 18,13, 12,13 | 43,15, 14, 13 5
T\e1ghh01hood btor(‘ 18, 15, 15,17 15, 15, 16, 15 1 L, 20, 15, 18
: - ES
6. Analyze the following data: \ ¢
ne
AvBracE NmMpER 0r CIULDREN per Fawtiy g\ ©
Cilies i Towrs S Ttral Arcss
Family income ‘ ¥ 2 N4 .
! White | Negro ; White ."T\??-.g:-u © White Negro
- . - :,__... R —‘I |
Under $4,000......... .. .. ‘ 21 | 24 | 2% 2.7 3.0 | 32
Over $4,000. .. ... ... . . [ 1 5 2.4

1.8 €% o 2.1 | 2.5
I\ | |

7. A paint-manufacturing Lompaen}“ te%t& new formmnlas for outside
paint by painting 12 panels of cas‘h of three kinds of wood (36 panels
in all} and exposing them for 2 \‘vmq in four elimates {warm dry, cold
dry, warm humid, cold humld} putting three panels for each type of
wood in each climate. —\\“}31 vup of puaint technologists then score the
panels on a scale fmmo@ Jo 103 Analyzc the following data for four
formulas: \}

N
£ S

D P T
wond AN 1 | 2 3 _4__
\) 1 21, 15,17 . 56,50, 53 | 41,48, 42 | 51,47, 48
N\ 2 20, 18, 19 | 61, 62, 62 , 46, 47, 45 | 53, 51, 54
N 3 26, 30, 31 | 72,67,70 | 50,48 B4 | 64, 63,60
O N | 81, 34, 32 | 66, 64, 67 | 51, 52, 35 | 64, 65, 64
N\ 1 24, 20,23 | 54, 54,56 & 30,38 3¢ . 50,49, 50
2 21,25, 25 | B3, 64 6L | 43, 44, 45 | 54, 33, 52
2 3 30,31, 31 | 7L, 71,71 | 49,48 53 | 59, 61,00
4 38,34,30 | 74, 71,72 | 48 56,53 | 39, 62, 62
1 14, 17,18 | 56, b5, 52 . 42,40, 40 ( 48,49, 47
3 2 21, 23,22 | 61,060,548 | 406,48 50 | 53, 54,90
3 30, 80,32 | 69,71, 70 | 50,47, 48 | 59, 62,63
1 36,38, 35 | 68,73, 77 | 53, 54, 51 | 63, 66 64
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8, A nutrition experiment studied the effects of five diets for
fattening pigs for the market. Fifteen pigs, threc for each diet, were
put on the diets for I month. The following table gives the final and
initial weights in pounds. Analyze the results.

Diet

118,72 | 102,70 | 91,63 | 104,65 | 93,68
108, 64 83,55 . 07, 64 | 110, G0 79, 65
100, 63 99, 61 l 92, 62 I 95, 57 | 96, 60 O\
NS ¢

9, A firsi-grade teacher with 20 pupils decided to test for herself
the merits of two methods of teaching reading. The classfwii’s divided
into two groups of ten and the pupils given an intelligence test (I).
At the end of the year they were given a comprehensive achievement
test {4} in reading. Compare the two methoiisq\ )

I | 112|121 |9 | 87 973{,%7 96 | 101 | 106 | 104
£ M

Method 1 —— !
A 81 98 | 71 6@,3'..65] 79| 83| TO| V1 79

T | o5| o8|81{dos| e 111t 107 | 99| 126 | 106
Method 2 - — —_-—_ :
a| 9| cogley | 72| 77| e 7| 88| 96| 68

78 3

10. Manufacturery E}f\\rﬁass-production items often use stalisticul
methods to control §ariations in the quality of their produet. Qne
technique is to pake periodic samples of items from the production
line and measui"é“s'ome eritical dimension or other property {hardness,
breaking st éﬁ\g’ﬁh) eloclrical Tesistance, ete.). Thus one might exam-
ine sa.:mplc&' size five every half hour over two 8-hour shifts, obtaining
32 sam{ﬂ{:é inall. How would you use these data to test l}omogenmty
of ’the production process over Hme, and what assumptions do you
require? 'The null hypothesis is that no factors have arept m to alter
the DI'Ocess—fact-orsvsuch as variations in incoming Taw materm_];
slipping of machine adjustments; failure of governors, thermostatic
controly, ele.: differences in techniques of assembly-line workers; \\"Ba_ll'
and-tear on the equipment; and the like. ng the null hypothesis 1s
accoptable the process is said to be @n controt.

1L Samples Io:’f three fuses were taken every hour for 2 days from ‘a
Process making 10-ampore fuses. The fuses were blown gnd the c{101—
rent measured with the following results. Is the process in control!
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10.3 § 0 : 10.0, 0.

1 10.2, 10.1, & 0.8
2 9.7, 8.9,10.4 | 10 9.8 9.7 0.0
3 10.6,10.1, 9.6 | 11 101, 10,1, 161
4 10.1, 9.8,10.3 | 12 | 10.3 10.2 10.3
5 9.8 10.0,10.2 | 13 [ 10.0, 10 % 16.0
6 | 10,2, 10.1,10.0 | 14 | 10.0.10.% 0.2
7 0 0.510.1, 9.7 15 1 100,104, 0.4
B 0 44 09, 97 16D 10LE ED2 jut
| |

12, Referring to Prob. 11, let  he the mean of ail observations and
let s be the estimate of the standard desviation based on thé\withjn-
sample deviations. Suppose now that anotler .mnpm i drnwn with
measurements ¥, #e, ¥ How would you test ¢ '«w...mng normality
and common variances) the null hypothesis thal L= BT

13. In quality-conlrol worls, after a collection, (:‘ nuupl(‘s has been
analyzed, & confrol chart is consirueted. lhg:\dull. 12 gimply o set
of three horizontal lines drawn on graph plyer i 7, %+ 3s/4/m,
T — 3s/+/m on the vertical scale. Hel ses the within-sample esti-
mate of the standard deviation, and m <\i 1e sample sige.  The central
Tine is called the process average, antl the other twe lines are ealled
condrol limits. One continues 3¢ sample the process periodically and
plots the successive sample mea,ns “as points on the chart (the absclssa
of the :th sample mean is 20 "When a point fulls oul<ide the control
limits, the production process is halted und carefinily examined for
presence of disturbing £actors.  About how many £5oie= per thousand
samples will the ro’(;;e?f;s he futilely examined it e process remains
in ¢ontrol? . K

14. In the aba¥c problem, the plotting of cacl point constitutes a
simplified tedt%el the null hypothesis described in Prob. (2. Criticize
this test, P¥nder what circumstunces wonkl yon romurd the lack of
iHdBPé’l&((lefnce between successive Lests as not serion=?

158\ Verify equation (5.7) of the text.

16 Show that the expressions (5.21), (5.22), and (5,23) reduce ©

\ ‘te’l'ms of (5.7).

17. Work through the details of the derivation of the analysis-of
variance table of See. 7

18, Verify equation (8.2).

19. Referring to the components-of-variance model of Sec. 9, SUP
pose one wished merely to estimate the varianee components of, &, 0;
and had no intention of testing hypotheses ahout them., Would it
be necessary to assume normality? Would the obvious cstimates
determined from the analysis-of-variance table (by equating mean
squares to expected values) necessarily be good estimaies?
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20, What arc the maximum-likelihood estimators of o2, o2, ¢l of
See. 9¢

21, Show that the four sums of squares in the first analysis-of-vari-
ance table of See. 10 are independently distributed by chi-square
laws,

22, Derive the cxpected mean squares in the frst analysis-of-
variance tabie of See, 10,

23. Varily equations (10.3) and (10.4),

24, Dvive the expected mean squares for the table of Sec. 11.

25, Show that (12.18) has the chi-square distribution and is inde-®
pendent of (12.16), Ke \'

26. Verilv cuzlion (13.8). £\

27. Vorifv the total in the analysis-of-covariance table of S@c 12,

28. Iu » two-factor experiment with cach factor at two levels, it was
possible to obiain only one cobservation for three of thexqells znd two

for the fourth.  Test for significance of the interactions”
; ( \.
A LS
4, | o8 54t

A | 50 | 55149
29, Show that the analysis—of-atj}?&fiance table would bave been as
follows had ihe cell frequenciesheen different, say m: '

7 "”
\‘ Degrees of
Source \ Sum of squares freedom
I \,}_atlm\“ E {we; — by — ,é,-z,-}.)s =m: — 2k
| T -
-35 ‘A\ﬁ‘“ E (zg-_: - éi.)g(ﬁi - 5)2 k - l
AN 2 ; - -——"'_" -
<~; » ) Z malEi = do - 87 ho?
R Z”‘ E"'” G =
3y 1
P i {z;_, PE I _
. (B 4 HZmlln Z20
p=g T B — B T P
S S - e 1
Total : Z {ze; — zm

A :
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30. Express all the a’s and 8’s of the preeeding table in terms of the
iy and ;.

31. Test whether the regression function is of the [orm o + 8z - 4z
given the following observations (x, 2) on a randow variate » and an
observable parameter z: (2.1, 03, (G, —1), (6, 4}, (1.9.0%, (0, 2), (6.1,4),
{0.1, 1). Do not work through the arithmetic; wercly specify all the
steps in detall.

32. Using the data of Prob. 31, test whellier the regression funetion
is of the form 2 — 3z 1+ 22

33. Discuss the problem of testing whether 1he meandef two
samples from normal populations with the sane variange ate equctl
Use the analysiz of varlance {or one factor of feg lu\\l’k«, ‘and com-
pare the resulting test with the one given in See. 128

34. Consider a onc-way classification with ol

z=1,2 -, and i= l\;i'{._\\f CL )

N/

#N

!1.5‘0115 Tif

there being unequal subeluss numbers g . \NMShow That the analysis
of-variance table for the compunent‘:‘:‘-ug\(; rrince motdel 1

INY i
o - £ - 0
. \ Bum of Aeprees of T Tapentoed
Souree ! o\ = !
HHATER SN frecdom  mean sgunee
" ’ . ———————— ——— - —_—
o * ’ . a, n
Effcets \ M .,I" — -1 [ IR IE: 5
| T '
1
S i\ A _—— -
-
Dev 1.Lfmn\\1s£ frig — &% . N - ] ul
— | I
1@ | ¥ o
otal\l L R
: \ I ’?‘ [ |
(N i i

{
when \ = Zny, o2 15 the ervor variance, ¢2 i+ the effeet varianee, and

D 1 .oxne
NS = i
O T T (\ Ry )

Observe also that ng reduces to m if all n: = m.
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CHAPTER 15

SEQUENTIAL TESTS OF HYPOTHESES

15.1. Sequential Analysis. Sequential analysis refers to techniques
for testing hypotheses or estimating parameters when the sample size
ja not fixed in advance bui iz determined during the course of ofhs\
experiment by criteria which depend on the observations as they fopur.
In Sce. 12.2 we considered the test of a null hvpothems,aggmst a
single alternative. It was shown that for samples of smc @, (@1, T2,
, ©.), the tost which minimizes the Type IT errop fet\ﬁxed Type

FIG:.\%.

error is the likelihood-ratio tt‘}t Thus if the Type I error is chosen
to be @, then « determmes\\a fiumber A by virtue of the equation

[]- -:f'}fa(xl)fn(xz) o ped - dm=a ()

P 41:\ &
where ’\\*3 ’
AN H filz) (2)
O o)

and the critical rogion for rejection of Ho is the region

Ao > A 3)

This ecritical region minimizes the probability 8 (Lype 1T error) of
aceepting J7, when H | is truc

Suppose it is desired to fix both « and §1

50 as follows if the sample size were at his
365

in advance. One could do
disposal : first determine A.



§16.2 BEQUENTIAL TESTS OF IIVPOTITLSES
as a function of 7 by means of (1}, then delcrmine 3 us a Function of 4
r

8, = ff .. ffl(ml)fl(x?) < fileddey < - s da, (4}

An <Ay

and finally selcet = so that g, has the desived value.

Suppose further that for, say a = .01 and 8 = .01, and for pariew-
lar functions fo(z) and fi(x), we had worked through the computation
and found # to be 100.  The following considerution: make sequential
analysis interesting both from the theorctieal und prcrical 'Vii}\poin‘r:
In drawing the 100 observations (o test Fy, il is po=sihlethmt among
the first few observations there may be one or more St'a\fz\ﬁ’ to the left
that eventual rejection of Hyis out of the question autl it would be s
waste of time to make the remaining ohservations Th other instances
the first 20 or first 30 or first 40 observaligu® may provide quite
sufficient evidence, relative to « and 3, foradetpting or rejecting I,
In short, the possibility is raised that, In ¥onstrucling the test in a
fashion which permits termination of T-(EQSLL!IZL[)HNQT ai any observation,
one can test Hy with fixed arrors « z;mﬂ B and vel doso with fewer than
100 ohservations on the averages NPhis i in faet fhe case, though it
may at first appear surprising in wicw of the fucl 1hat ihe besl test for
fixed sample size doos requided00 observations. The saving in obser-
vations is often  uite largey sometimes more 1han 50 per cent.  That
is, in repeated tesis ()['\Hn against Hy for fixed veniiol of both errom,
100 observations pef fest may be required for fived sample sizes, but
for seguential sa:n%a ing and the same control of the crrors, only 50
observations per.fest may be required on the averave.

15.2. Conpsfruction of Sequential Tests. The ilwory of scquential

‘/test-ing haghbeen developed only for the case of festing o null hypothe-

/N

N\

sis IT G\Qg}iﬁst a single alvernative H.. It will hecome apparent t.}}e
la.tpt:‘%ctions of the chapter that this restriciion i not serious I
application of the methods to practical problemns. We shall let Hu
s;I'(f’.feT.‘ lo a density function fo(a) and M, to f:{x).  Ohservations “"IH
be denoted by @i, 2y, - - -, where the subscripts give the order®
which the observations are taken.

The sequential test employs the likelihood ratio

m
| .'F{) (1}
hm — fl(
‘,IJI Tola:)
and two positive numbers 4 and B, with 4 > 1 and B <L 3‘5
observations are made, one computes the ratins &y, Ay, Asv © 7 7 aD
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continues taking cbservations as long as
B ‘< S - | )

if for some s A, is less than or equal to B, H, is accepted and the test
is completed. If N, becomes greater than or equal to 4 at some
stuge, Hy i3 rejected and the test is completed. The procedure then
it to vontinue sampling until A, falls outside the interval specified by
(2), at which time the sampling ceuasos,

WThe first question that naturally arises is, What is to prevent thé\
sampling from going on forever? It is casy to show that this cannat
happen—that the probability is one that the process will tt—}rg'lhla}te
whatever the distribution of x.° Let g >

2%
& ™

2 = log [ﬁg] R (@)

then z will have some density function, say g(e)y determined by the

density funetion of x [which need not be fo (z)o\ﬁfyl(x)]. The sequence
of observutions iy, wg, + + - determines aMéeguence of # observations
21,22, + + + . The sequence of inequalities’ (2} becomes

W

~

LLgN :’.. N
log B <‘E‘z.;"< log 4 (1)
N ;L’

where log B ig negative and{dog A is positive. Let ¢ = log A — log B
and let ¢ b the area lar’ g(%) between —¢ and ¢. Now ?f.any one
of the 2 falls outside dbeNnterval —c to ¢, one of the inequalities in (4)

will necessarily be winiated either at that stage or, if not then, at some
AN

o

\t - | e F3

previons stage. Hence if (4) is to hold for all m, at the very least
overy z; must fall between —¢ and ¢ (Of coursc the inequalities may
be violated though all the #’s do fall in that interval.) The pl‘(]bab%llt}r

that evory 2z falls in the interval is p* for the ﬁrst m ohgervations
~ (sinco they are independent), and this probability approaches zero
A Thus (4) cannot remain true

48 M inereagses, sinee p is less than one.
o | . de —¢ to ¢, one would define

indﬁﬁn‘lte].\v_ Hn case g(z) 18 Zero putsl
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§15.2 SEQUENTIAL TESTS OF HYPOTHESLES

new variables g, letting y1 be the sum of the first 7, s, ¥, the sum of
the next r, 2's, and so forth, taking r to be large encugh that the non-
zero range of the density function of yrdoes not fall within —¢ to ¢}
v We turn now fo the determination of A and B, "The probability
a that I, will bo rejected when it is true is found by computing the
probability that A, will excced 4 before it bocomes less than B, Ttis
clear that

=P A+ PE <M <A N =D A
+PEBE<MM<A, B Cd, =200+ (B}
oA\
Similariy the probability 8 that I, will be accepted \\']wn\’H L 15 true s

R

B=PM<B+PR <M <A <B RGB!
+FPB <M<, B <A, MED A+ - (B

For two specified density funetions fo(e) and X0} one could compute
all these probabilities, using fo(z) in (8) a®t fi(x) in {G). Tt follows
then that « and 8 are known funclionsel :[‘ and B; hence if « and 8 are
speeified in advance, A and B are (‘.lgai?(il'rhincd by (6} and (6).

w As might be anticipated, the actlial’ determination of 4 and B from
(5) and (6) can be a major comfMtational project. Tn practice, they
are never determined that wd¥ beeause u very =imple and accurate
approximation ig availableO\ The approximate formulag are

N\ 24 .

¢ 5 o= ﬁ (8}
2\ I —a

. Y
and th@wﬁse from the following considerations. Suppose A, were 2
contiidous function of a continuous variate m so thai A, could Le
qutt\ed as a curve against m, and supposc the test were performed by
‘moving out along the m axis until \,, first cqualed A or B. That
the test 13 continued as long as (2) is true and ceases when either
M = B (Ho accepted) or N, = A (H; accepted), At all points of th.e-
(w1, w2, - - v} space where H is accopted, the likelihood of H, say Ly ¥
exactly B times the likelihood Ly of Hy, since » = L /Lo = 5 at those
points. Hence the integral of 1., over those points is exactly eqllﬂ_l to
B times the integral of Ly over those points. DBut ihe first integral 18 ?l?’
and the second is 1 — a (the probability of accepting Ho when 161
true). So we would have 8 exactly cqual Lo B(l — a) if conlinuo®
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sampling were possible, and (8) would hold exactly, By a similar
argument &l A, = A, (7} would be an exact equality if m were a con-
tinuous variule. BSince the error of using (7) and (8) is merely a
gonsequence of the disereteness of m, one would expeet it to be small,
and analytical investigation shows that it is quite small when both
a and 3 arc less than one-half. We shall not, however, look into this
matier.

Equations (7} and (8) make the actual performance of a sequential
test astonistimgly simple. Tt is not necessary to develop any sampling
distribution theory at all; one merely selects « and 8 arbitrarily, coms M
putes A and B, and pr oceeds at once with the test, A

15.3. Power Functions. Let a density funetion f(z; ) hsn»e\ otie
parameter 4 and let us test the null hypothesis, § = fh, agmn‘st the
alternative hypolhesis, # = 8. We are inlerested in thc Behavior
of the test {or all possible values of 8. In partuular W, hall examine
the power funclion of the test, P(f), which is the probabﬂlq that #y
will be rejected when 4 is the truc parameter Vah@ WwWOf course -

Pit) = \‘ (1)
P =1 —ﬁ » (2)

and (supposing for definiteness Lha’t aﬁu < 8,) we should expcet the
power function to have somewhat} tl:u, shape of the eurve of Fig, (9.

Fia. 69.

is simply to add the prob- '

The straightforward way to compute P(f) Thus

sbilities {hat H, will be rejected at each observation.

Pl) = POy > A) +PB <M <4, 2> 4)

+P{B<)\1<A B<)\o<4_?\3>A)+--- (3
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where, for example,

P(B<nm<d4 >4 = f f [y OF (2, 6)dz day (#
B

and the double integral is taken over the region R in the 21, x, plane
defined by the incqualities

flay, 1) Jlas, 00 (e, 63}
B <f(-’€1,' o) <4 FGay, 00)f (s, 62) 7 4 A (5)

This procedure for determining the power funetion iz tedighs to say
the least and is usually so troublesome as to be completgld Sl of the
guestion in practice. A

To avoid the use of (3}, a very ingenious device hafbéen developed.
We shall present it without a formal proof of it detrectness, merely
giving the gencral pattern of the proof. Thelawument requires first
the existence of a nonzgero number £ such tha}'\r\;

Szs o
f e — J o i}
gl &) EN J@; 8 (6)
is » density function; ie., a num‘ffgél‘ % such that
f::; glz; Ode = 1 {7}
S

Of course h = (¢ wil I’éafte g(z; 6) a density function, because flv; &)
is a density functipn. ¥ To show that such a nonzero value of h exists,
we consider the {?Kpt-tcted value of [fle; 09/ f{x; 4)]" a= a funection of 4
say ¢{u O

y o), 0O

'\\:\‘ d(u) = f _n [;E:L%]u flz; Bydz (8)

Oliously ¢(u) is always positive, and furthermore $(0) = L. We
Ccah also argue that ¢(u) becomes infinite when 1w approsches infinity
in either the positive or negative direction. Since f(z, 1) and f(z, 95'}
differ, there will be an interval or set of intervals where their ratio i
greater than one, Over such intervals the integrand hecomes lurge
with increasing u, and ¢(u) — « as u— «. Similarly there will he
intervals where the inverse ratio is greater than onc and the integrand
becomes large for large nogative value of u. This is enongh to ghow
the existence of . (Of course, ¢(u) may have a minimum at % = 0,
in which case h would not exist, but this can happen only for particulal
370 :
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values of ¢, not in gencral.) Bo far as our argument goes, there may
be several values of  for which ¢{u) = 1, Actually there is only one
for the shape of @(«) is as iltustrated in Fig, 70; the minimum thouah,
may be Lo the lefh of the origin so that A may be negative. Tl’ms th;ré
exists a nonzero /i in general such that ¢(h) = 1, and (6) is therefore &
density function,

@)

7] ) \* O u
Fra. 70. \ ‘.: }

One now sets up a sequential test of thelpull hypothesis Hj that the
density function is f(x; 6) against thevaltbrnative hypothesis H{ that
the density function is g(x; #). Ofséotirse the null hypothesis herc is
true by assumption. The limits\for the likelihood ratio are taken to
be 4% and . Thus the testpontinues as long as

& .
" y(rc»;%(wé; 0 i ) g (9
S 0f (s 6) - - [ o)

and ceases when {0 ratio cquals or falls outside these limits, We arc
#ssuming hﬂl’e\'{hzi.t- h is positive; if it is negative, 4 and B are inter-
changed. [i\lew of (6) the test defined by (9) is exactly equ}valent
to the orjgiial sequential test under consideration; Le., (9} is equivalent

to \
N B < [(ij)—’ ) L f__(x”‘; 6a) < A (10)
s 00)f(e; B). - - - S (Tm; B)

Thas the rejection of Ho implies the rejcction of Hi. But we can

“ompute at once the probability that Ho will be rejected when Hy is

bue [f(z; ) is the true density function]; hence we ha‘?"? P (fi) for

&3 0). HY will be rejected when if is true sgith probability_a a.nd

accepied iﬁ?{Wjﬁty 5’ where, in accordance with
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{2.7) and (2.8},

1 _ +’
YLPSE S (1)

B £ (12)

11—

On solving thig pair of cquations for o', we find

1 — B
o —P(@)_ 1,’4__3;.

(13)
Thus to find the ordinate of the power function at a poing, ‘one first
finds the function ¢(u) defined by (8) for that valucef 8 then puls
$(u) = 1 and solves for u; the nonzero root is the numhm hoof (13),
which then determines P({J)

As an Hustration, let us consider the null Ly ,‘;NQ‘H’[PQ]H ihat the mean
of a normal distribution s gy against the alteshative (hat the Toean is
py (with we < ur), assuming that the \dliN(’e c? is known,  We wish
to find the probahility P(u) that i will LQ,\L( jected whoen the true mean
is . The funetion ¢{u) is

A\ W

N/

¢,(u) = ]m 1 e-— ‘!‘—}J]?/‘Zazl (-14)

" \/2'1—0 \

The integral is easily ey a,luatod, and on putting ¢fw) = 1 and solving
for u, we find that onc,wot is u = 0 whilc the other is

\
\ h:*‘l—j‘*‘yi"ﬁ {15)
1 = it

</
On substi‘gu\f,iﬁg this expression for & in (13), we have an explicit
formula for’"(u) in terms of g, :
15. %’%ﬁrerage Sample Size. The sample sizcn in sequential testing
18 gwandom variable with a densily funection, say p(n), wlich may be
det\ermmed In terms of the true density function f(z; #). Thus

) 4

p(1) = PO\ < B) + P(a; > A) (1
P2 =PB<M<AMN<B +PB <M< n>4) @

and so forth, where the probabilitics on the right are determined
by integrals like that of cquation (3. 4). In this section we shall
find an approximate cxpression for the expeeted sample size E(n) and
then illustrate the cxtent to which sequential methods may save
observations.
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Let

fla; 8y)
7058 3

and let » be the smallest integer for which 21 422 4 + - - + 2, = Z,
does not satisly

z = log

log B < Z, <log 4 4

We shall show that the expeeted value of the variate Z., which
depends on the random 2’s and the random variate , is simply

E(Z.) = Em)E(@) (5N

To do thiz, we let ¥ be some very large but fizxed value of and.@iéﬂ?-
gard 1hat part of the distribution of # to the right of N.  The resuliing
error can bo made arbitrarily small by taking ¥ sufficiently large.

Bince N iz fixed, it follows that \\

E(%:) = NE(@) ®)
The variate Zy may be put in the form \*\\

ZA' == Zra + W{:‘tVz I (7)
deflning ancther variate W, and by j{i.’rfr’.ue” of (6)
| E(Z. + W= NE(@) (8]
The trouble with trying to g8t ’('5) directly is that the range of &
depends on whether ¢ < n.‘cn;\i > m. In the latter casc £ (z!-.) = E(@),
but when ¢ < n, the rafige of 2 is restricted by (4). Now in (8) the
variale T, consists of\e’s with ¢ > », so that the expected value of
sach zin W, is E t;a)\“} Thus

L7 EW) = EQEWN —n) 2

where i:he.sééﬁi’d factor on the right depends only on the distribution
ofn. Combining (8) and (9),

Q NEGR) = E(Z.) + E(W.) (10)
A — E(Z.) + E@IN — En)] (11}
which is the same as (5): solving for B(n},
E{(Z.) 12)
E(n) = 0} (

one to get a simple approximate formula
The variate Z. takes on only values
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beyond log 4 and smaller than log B. If one ignores the amounts
by which Z, excecds log 4 or falls short of log B, he may say that 2,
takes essentially only two values, log A and log B, When the tiue
distribution iz f{z; ¢}, the probability that Z, tukes the value log 4 ig
P(8), while the probability it takes the valuc log Bis1 — P(#). Henee

E(Z)=P(M logd + [l — P& log &£ {13)
which together with (12) gives
N
P(ﬂ) log i + [ — £ log B
Eln) o %5 W\\ (14)

This result enables one to compure sequentinl tests mihvh\{,d ~gample-
size tests. < ""'

Az an illustration, we shall consider the tes "t‘hal; @ =0 against
w = 1 for & normal population with unit varitnee. We shall choose
a = .01 and g8 = .01; then (2.7) and (2.8) gj\ze A =98 and B = L,
Let us further assume that the true paraﬁ}é'l;er value Is zero #o that
P(#) in (14) is just .01.  Also we neegl.'*g'.g) compute the expecled value

of \J
z = log e;;:f?:z] =z — 12 (1)
which 18 —14 under the ‘rmo (;llbtl ribution.  Thus
E\@K&)\— .01 log 99 j-1;q og lag
O 2 1.9610g 99 ~ 9 (16)

N\

To get thé\same control of the two errors with a sample of fixed size,

we rec \htxt the best test is made by choosing a number ¢ and

acceptm or rejecting = 0 according as 7 is less than or greater than
T]Ie probability « that Hy will be rejected {under p = 0} is

\}... n . ] =
¢ =l | etmmgp o 2 / e gy
’JQTI" [.: \/211' RV

so that for @ = .01,
Ve = 2.326 (17)

The probability § that Hg would be secopted under Hy (o = 1) i3

¢ 1 Vinle- 1) S
8 = 4 F%f DGR jg \ﬁ[ ! o g
p— T} =
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go that for @ = .01, . |

On solving (17) and (18) for =, we find it to be 22.  Thus in repeated
tests of the hypothesis in question, the sequential procedure would
require on the average only %45 or 41 per cent ag many observations
as the fixed-sample-size procedure.

16.6. Sampling Tnspection. A particularly importani application
of sequentinl {esting is in inspection of manufactured items. Large™
¢onsurmers suich as retail chains, assembly plants, government agepcies,
and the like usually contract for periodie deliveries of iterns .iil ‘hﬁge
groups called lots. Certain spceificaiions for the items in ‘guestion
are stipnluted in the contract, and it is further stipulated; that the
items shull be inspecled or partially inspected to engite that only a
small proportion of the delivered items fail to meet(the specifications,
Ordinavily, defective items are not so erucial as toWwhrrant the expense
of complete inspection of all items, and sampling inspection is used.
That i¢, the supplier will inspeet a sampl(‘:.}f the items of a lot and
estimate the proportion of the lot defe;cﬁ:vé. If the quality of the lot
appears satistactory, it is delivered j 6bhérwise it may be sold to a less
exaeting consumer, or to the origiital consumer at a lower price, or it
may be completely inspec‘ued&(ﬁ the ingpection is not destructive)
and the defeetive items roflaved. When sampling inspection is to
be used, the actual sampl'ﬂ% procedurc is often a part of the contract.
The supplier does noet g@a}antee that the proportion of defective items
in submitted lots €ill be smaller than a given amount; he merely
guarantees to sithiash only lots which have passed a specified sampling

Inspection Losgpo ,
" 'The simplest sort of sampling inspection plan is the so-called single-
samplingéplin. One inspects a sample of size n and accepts the lot as
satisfadkdry if the number of defective items is less than or eqq%l to a
giveh humber ¢; otherwise the lot is rejected. The pr obability of
aPeeDling o lot under such a plan depends, of course, on the proporfion
of defeclives in the lot. The density function for the uzmber  of

defectives  is
M) (N - M)
JARTZ/ (1)

g(z) = N)
&

where N ig the lot size and M is the number of defectives in the lot.
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§16.6 SEQUENTIAL TESTS OF HYPOTHESES

This distribution is somewhat troublesome to work with, and since »
is usually quite small relative to &, it is customary to approximate the
function by the binomial

f&) = ('jj) (L — p) @

where p = M /N i1s the proportion of defectives in the lot.

The performance of a sampling inspection plan may ho portrayed
by the operating-characterisiic curve, which is simply a graph of the
probability of accepting the lot plotted over the range of p {This

probability for the single-sampling plan is Ko
[ [ O -
L) = Y g@= Y @) A\ 3)
=0 =1 a\ ¢

using the binomial approximation as we shall dg=h this and the next
section, An operating characteristic is plotgeldin ¥Fig. 71. If, for
example, one wished to pass all lots with ByDer cent or less defective
L
£{p) A\

N/

1.0 N
g

Q.10 0.15 020 0.25 0,30 ye
O\ e 71,

=
~"‘
(.
=
o
tn

and rejg‘(:.} all lots with more (han 6 per cent defective, the ideal operat-
iqg:tsliar:act-ex-ist-ic would be the dashed curve of Fig. 71. This could
10h be achieved without complete inspection. Sampling inspection
will necessarily rejeet some of the acceptable lots and will aceept some
lots which should be rejecled.  The more sampling otc is willing to d(_”
the more nearly he can force the operaling characteristic Lo approxi-
mate the ideal operating characteristic. The actual extent of t-l}e
sampling in any instance depends, of course, on various cconomic
factors assoclated with the particular problem at hand-—factors su(‘:h.
as production cost per item, inspection cost per item, difference 10
‘market value of aceepled and rejected lots, ete.
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SEQUENTIAL BAMPLING INSPECTION §15.6

Sampling ingpection plans may be regarded as procedures for testing
hypotheses. Thus the single-sampling plan is just the procedure one
would use 1o test the null hypothesis that the parameter p of a binomial
distributicn has the value po against alternatives p > po. Given a
sample size » and a specified size a for the Type I error, the Type II
error would be minimized for any p > po by choosing the integer ¢ for

which
Z(;:) PRl —p)* P =1~ a {4 ’

[

and rejecting the null hypothesis when z > ¢. It is o be obscried
that the operating-characteristic function is simply one mings,the
power funetion of the test. A\

Somewhat more sophisticated inspeetion plans use doubleNsampling.
A small sample of gize w12 examined, and the lot ma.y.‘l.;e\a-ccepted or
rejected on the basis of this sample. But in bordetlhab cases asecond
sample of size 1. 15 examined before the lot is ﬁnxa@:cla.ssiﬁed one way
- or the other.  Formally the procedure is: 4 &

. Examine a sample of size 7. P \4
. If 21 (number of defectives in ) < ¢4 accept the lot.
 If 23 = co, reject the lot. N

e < 21 < ¢, examine a schén"sa.mplc of sizc B

. If 1 4 29 < ¢35, accept the o6,

Iy + 24 > ey, Teject ﬁl{é Tol. .

This procedure containscthb.germ of the sequential idea. It is better
than single sampling in %he following sense: Given a single-sampling
plan with sample sizenAnd a double-sampling plan with average sam-
ple size 7, one can’Wore nearly approximate the ideal operating ch.ar—
acteristic \"i’f-h\til}“]att-el‘. Or in other words, for a given operating
characteristipodouble sampling will require on the average fewer
observatigns than single sampling.

15.6, ~Séﬁuential Sampling Inspection. We ghall suppose b‘hat ]_arg_e
lotxarg “being denlt with, so that the error of using the binomial distri-
butiofl is of no practical importance. Let us further suppose that the
upplier’s production process, when all i well, produwl:s about 2 per
cent defectives and that the sampling inspection plan is sul.)posed to
accept most lots wilh less than 3 per cent defactive and I‘e,]?@t u_lost.
lots with more than 3 per cent defective. T his_ is the usgal sxtuatu.)n,
& supplicr who eontracted to provide better quality than his pTOd‘if’tlon
Process was capable of would have little uge for sampling Inspection.
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§16.6 SEQUENTIAL TESTS OF HYPOTHESES

In sctting up a sequential plan, one must first put the test in terms of
a null” hypothesis and a single alternative. Thus in tho present
instance one might fest the null hypothesis py = (35 against the
alternative p, = .04, accepting the lot whenever the null hypothesis is
accepted. In general, two values po and py are chosen und two prob-
abilities @ and g for the Type T and Type 1T errors.  Tlus one has at
his disposal two points on the operating characteristic: {py, 1 — a)
and (p1, 8). One could make the inspection plan very eritical at
p = .03 by choosing, for example, the two points {029, .999) gnd
{031, .001), but in doing s0 he would ensure that consideruble sahpling
would be done.  The actual choice of these two points 1('Rendq on

econoemic considerations. £\
The individual obgervations y: have the density fl.ll}f{i’:l(}h
plL-p D W
and if E ¥ 1 denoted by 2., the likelihood 1at1 vis

M. = 8 - g%f )

Observations are taken until elthf,r )\,. < B, in which cuze the ot is
accepted, or A, > 4, in which C.}k[ ‘the lot ig rejected. A4 and B are
computed from {(2.7) and (2. 8.)

To get the operating chzu.i( rteristic, onc firgt finds (), which 18
simply

" \5{28 - iiil )] ®
¥ 1—y [ Pt i — wll—y’
R, .’\ yS-:Op (I —p) ('Po) (“1 — p;])
‘;~\~~‘ = (%) + (1 = p) (i_:%l) )

nd the number h of Sce. 3 is the nonzero root of ¢(u) = 1, so that A s

\leﬁned by
pY' AN (5)
£2 1 — P} =
p(2) +a-n(20)
This equation together with

A4 -1

Lp) = ju = ©

[obtained by subtracting both sides of (3.13) from one] determine th_ﬁ

operating-characteristie function. Since the solution of {5) for & 18
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INSPECTION §
16.8

5 troublesome computation, one ¢
o : 1, omputes point; -
choosing values for A arbitrarily and calculgtingstﬁz fhe curve 'by
yalues of p and L{p) from (5) and (6) ' correspanding
Often a sufficient appraisal of th operati
Often c ppr: e operating ch isti
obieined from five casily computed points on t%lec ciii?cnsm can be

L) =0 Eg
Lip) =1 —«a : o
Lipy) =8 (16)~"\
L) = log A \ ‘.\“.\.
where log 4 — log B @ (I1)
f log [0 = p/ti =)l (D (12

p =
log (ps/pe) — log [(1 — p1)/ (1 =)}
glf (i)ﬁft? pfﬁnt [p', L(p")] is between py and py dnd corresponds to
=0; t.Lrle formulss (L1} and (12} are obt-aiyc@;by letting k approach
zero in () and (6), which become indetermiinate at 2 = 0.

L i '
Q‘«’ po PP 10 P
\ : Fra. 72

be plotted easily after L{p) has

Ls N ,’;
The*aP¥erage-sample-size curve may
), the ordinate of this curve

b “'H\P‘I&itﬂfl‘ Referring to equation (415

(Fig” 72) is given by

E(n) o [1 - L(p)] log 4 + L(p) log B (13)
pTog (p/p + (4 — p) Jog [(L— )/ — o)l

where we have substituted 1 — L{p} for P(p) and

oo = | log PO = P
E@_E[ﬁafmw] 0
l-m (15)

1l

n — P} —
plog;ﬁ_(l Py
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§18.7 SEQUENTIAL TESTS OF IYPOTHE&ES

The maximum value of E(n) oceurs very nearly al the point ' given
by {12). At that point, (13) becomes an indeterminate form whose
limiting value is
log 4 log B
log (p1/wo) log [(1 — 1}/ (L — po)]

This is approximately the maximum average sample size and oceurs
when the true proportion defective has the value given by (12).

15.7. Sequential Test for the Mean of a Normal Population, Asa
final example of sequential testing, we shall consider the twolshled
test, of the null hypothesizs f, that the mean of 4 normal ])()Rl]_l&ltlon

(16)

has the value po. Tt is assumed that the varionee o2 s l\u{m‘n Itis “Q

necessary to frame the fest in terms of a single allernative Ay If
we were interesled in g onc-sided test, say agaimsl all& Tihtives o> g,
we should simply choose some arhitrary value p,,\{@,z cater than gg)
for the allernative, But that alternative will'alaf serve for the two-
sided lest, because the power funetion appl%(‘h(a ZETO a5 u moves to
the left. "

The trick here is to phrase the hyp Otll(%ﬁﬁ}q in terms of another param-
eter 6 which measures the distance of WArom g, The new parameter
5 takes only posilive values and igdofined by

8= p -\—;lg if p > pp (1)
=mg—pn ifu < 2

The null hypothesis i is nm\\ﬁ = 0, and the alternative is § = &, where
&t 18 an arbitrarily ch\h(n number. Now one must sef up a gomewhat
artificial alternalite distribution function, because the number &
actually refersdd4wo distributions—one with mean u, — 8; and one
with mean ,uut\#-" 61.  The alternative density funetion iz defined to be

1
f ’& g le—prkidtrim) 1 =
\/_ 2vore

ﬁh}ﬁh i3 clearly a density function. Under H, the density function i,
ofYcourse,

e—[(m"—}lu—ﬁl)::’ﬂﬂ'g] (3)

e—[(r—#n) 2/20%) (4)

Jolz) =

Yl

It is apparent that the likelihood ratio will behave as we wish. I #
i8 to the left of po — 8y, the ratio £1/7, will usually be largo beeause of
the first term on the right of (3), while if ¢ > us -+ 81, it will be large
becauze of the second term.
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§KQUENTIAL TEST FOR THE MKAN OF A NORMAL pOPULATION $15.7

The test is now performed in aceordance with the usual procedure.
One chooses probabilities & and g for the two types of error and com-
putes 4 and B {rom (2.7) and (2.8). For a very sensitive test one

Pl
1.0
-4
- ‘\
- M
g O
s Mo ‘<°¢6I “

Fia. 73.

would choose 8, as well as o and § to be gm:}s:ﬂf Observations are
made until . ol \‘
= i 5
A =10 oy (6)

exceeds A or becomes less than B o

The test ziven here for Hods Tercly one of many p.0531b111t¥es‘ We
have beun quite arbit-rarymﬁi_sctbing up the alternative (%ensﬂ.;y fune-
tion, and it is entirely (‘Gi(ceivable that some other form might 1mprc1)1vc
the test, might reduge the average saple size under t-h'e null hypothe-
8is, for example, OF niight have other desirable properties. R

When the variance is unknown, several tests are available; mos 1?
them use vweight functions of one kind or z.mother. 'Pe(lihapf tbs
simplest l.@}%“is that based on the ¢ distribution. If we e(rilo f‘[h“
ga(t; 1) ~1-Ta:e density function for { with n degrees of freedom and with x
th@.\mi‘.;.ih of the normal population, then one may define

N  galts ) (6)
An = 0 )

withn — 9 3 4 -+ -. Although this function is nob of thte Cand
type ag $he others we have considered (because the nfu r;.;i;: Zidlnt
denominator are mot products of density f.uuctmns doﬁh%t (g 7) and
variates), it can be shown that the test terminates and that L=

{2.8) determine 4 and B as beforeé'.&1



§15.8 SEQUENTIAL TESTS 0F HYPOTHESES

The criterion (6) refers, of course, to the one-sided test of g, againgg
an alternate u, greater than pe. For a two-sided test of Ho, ODE Mgy
use

}2‘%(3 s+ ‘51) + /ZJnU} pi o &) .
galfs .Pn) . (7

where § has the same meaning as in (1) and (2).

15.8. Notes and References. Sequential unal ¥&Is 13 4 quite recent
development in the theory of statistics, having been sturted in 1043
The theory is due primarily to Wald [1], whose excellent and}lmte
readable book on the subject contains most of the deve loppieuts made
up to the date of its publication.  Wald's worlk has stiymdatéd much
research, and the techniques of sequential analysis S 1;[ ‘doubtless be
u;tended considerably during the next few yoears. ~.‘

Thus far, most attention has been given to J,hg"nmum of testing
hypobhewb, but sequential methods also premize {v increasc the
efliciency of estimation procedurcs. The b roilem here is Lo choose In
advance a 1 — « confidence interval ()Kspocmul lengith and make
observations until the eonfidence intepval can be said Lo cover the true
parameter value with the desired proba,blhr}

The matter of testing composita hvpo‘rhmcb recuires turther develop-
ment. Wald has shown that this hroblem may be deali with t by means
of certain weight functions “ehosen in an optimunt fashion. Bul a-
detailed general theory i 1RO yet available,.

A good exposition of s‘mnplmu ispection {rom the praectical point
of view is given by the'second reference.

1 A, Wald: “S@quential Analysis,” John Wiley & Sons, Ine., New

ank 1&47‘. .

2. 1L ert'man M. Friedman, F. Mosteller, and W. A. Wallis:

“S’%‘lpimg Inspection,” McGraw-Hill Book Company, Ine., New
Olk 1948,

\{5}9 Problems

1. Perform a sequential test of the null hypothesis that p = 48
against the alternative that p = 30, Tet p refer to the probability
of a head in tossing a coin, and carry through the test by tossing 2
coin using « = 10 and § = .10. The arithmetic is simplificd by solv-
inglog X, = Bandlogh, = 4 for 2. (the number of heads in n Losses).
thus obtaining acceptance and rejection numbers as linear functions
of n.
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PIROBLEMS §1 5.9

9. Show that equation {3.13) ig correct when k is negative,

3. Assuming a lot has size N with M defectives, what is the exact
expression for the operating-characteristic function?

4. Show that the ratio 945 obtained at the end of Sec. 4 depends
only on the values of o and 8 and not on the sizes of % o, and ui.

5. Compure the average sequential sample size with the fixed
sample size for the one-sided test of the mean of a normal population
when a = .01, 8 = .05, und the alternalive hypothesis is true.

6. Show that the onc-sided test for the mean of a normal population A
with knovn variance may be performed by plotting the two lines

N

.'\“\'
o’ o M N\ *
¥ = - lo B + —_— 0 o\
LT & 2 PAN
o? po + AN
Y = 1o A —[-‘ — f AN
Y = o g s 3 \

_ n R\ '
in the #, 7 planc; then plotting ) @ against n {E‘ﬁﬁé sbservations are
1 .

made. The test ends when one of the lingd\strossed.
7. Referving to Prob. 6, let ¢ = (ko i1)/2 and let the two con-
stants in the equations be denoted by}?j and ¢; i.e.,
olog A
G —
LA BT e
L)

,Bhow that the power fm%t\.ldn for the test may be put in the form

A%/ ] — gleweie?
:o\".,’ P(,U') &= éﬂc:‘)ﬂ_“: __ Gz(g_mb;,!
'S :
8. R-Cfér'%l; to Probs. 6 and 7, show that the expression for the
a’vemg‘-“éﬁmple gize may be written
N \ n':
A% b PE -9
oy 22 T

9. Verify equations (6.11) and (6.12).

10. Vlot the power function and average-samt
the test of Prob. 1.

11. Piot the power function and the avers B
for the test that the mean of a normal population

= = .05,
alternative that it is one.. Let a? :3 l,a= 01,8 0
' 3

ple-size function for

ge-sample-size function
is zero against the
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12. Find formulas for the power function and average sample gize
for sequential tests on the mean of a Poisson disuribution,

13. Supposc a production process produces lots of size N with i
defectives in such a way that 3 has a binomial distribution. Show
that a sample of size n (with = defectives) can provide no information
about the proportion of defectives in the remaining ¥ — 5 items of 4
lot. :
14. Bupposc lots which are rejected under a scouential sampling
ingpeetion procedure are completely inspected and the defectivedioms
1'eplaccf..l by good i!;ems.; this is‘ A common 1.1}':1(!-6(:-(?. Lt \p\be the
proportion. of defectives in the original lots.  Whal will 1'_}@.@1u“average
proportion of defeetives over all delivered lots counting™hoth those
completely inspected und those passed by the Hz.i.rnp}ﬁﬁg plan? This
function of p is called the average outyoing queakilyy Qﬁ'{cii{m; the muxi-
mum of the function is called the average outgoitfighiality timir,  Make
a rough sketeh showing the general shape of ﬂQ fhnelion.

16. Referring to the situation described i/Prob. 14, find the average
percentage of items inspected as a funeioh of p, counting both passed
and completely inspected lols.  MNakedw rough sketch showing the
general shape of the function. o

16, Buppose a uniform distrih{ﬂj’mn hag the range 0 < 2 < . Dis-
cuss Lhe scquential test of 02%g, against # = 8, with #, < f.. Be
careful here; some of the géiteral formulas may not be applicable.

17. By an argument giteilar Lo that used to obtain {-£.5), Wald has
shown that \\”

N\

,\"',5 Efete(t)] ™} =
where ¢(t) isAhie’ moment generating function of 2, ie., ¢(t) = E(e?),
and where\?@é’ expectation B is over the joint distribution of the 2's
and thefidom variable n.  This is called the fundamental identity
of sequigntial analysis. TUse it to obtain (4.5).

{\»1\? ‘Usc the identity of Prob. 17 to show that

B(73)
En) = G
when E(z) = 0. o

19. Use the result of Prob. 18 to obtain (6.16). .

20. Use the result of Prob. 18 to show that the maximum average
sample size for one-sided tests of the mean of normal population 1
approximately ~ab/o°, where o and b arve defincd in Prob. 7. Assume,
do not try to prove, that the maximum oceurs at & = 0.
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CIIAPTER 16
DISTRIBUTION-FREE METHODS

16.1. Introduction. In Scc. 7.8 the important place ascribed to the
normsl digtribution in statistical theory was justified on the badie
tbat any known continuous distribution could be transformed, 1'{0\1;hc
normal bisiribution. But, of course, experimenters quite frequecrtly
have no knowledze of the form of the distribution with whieh'they are
dealing, vr at least so little information that they caxnot prescribe
a normalizing transformation. Until recently theré, Was not much
to be done in this situation, and experimenters were more or less foreed
to make wholesale assumptions of normality \ Puring the past few
years, however, techniques have becn devqle{é&h for estimating param-
eters and tosting hypotheses which reduire’'no assumption about the
form of the disiribution function, :Jn‘,liesé teehniques are called non-
porgmetric methods, or betler, dgﬁsﬁrﬁﬁ’r.;tion—free methods. While the
eollection of dislribution-free mg‘e’tliﬁds is not nearly so comprehensive
as that hased in normal theorvya good beginning has been made, and
this chapter will present sGmé of the results.

Heretofore in derlotiqg.ﬁ sample by Ty, ®9 0 7 I the symbol
veferred to the Ords aﬁservatian made, z: to the second, ar.ld 50 on.
Throughout thiszghapter the notation wil be interpreted quite dl.ﬁCl‘—
ently, The swiﬁ)ol 2, will refer to the smallest of the n observations,
Ta will 1‘epre$m£ the second smallest of the observations,' and so on,
with z, @}érges’o‘ Thus, for the sample of four observations, 2, —4,
—1, 1,3\ refers to the second obervation, 2z to the third, ¥s to. the
fougth and z, to the first. The phrase ordered sgm;?le. is often used.tn
wdicate Lhis interpretation of the notation. Distribution-free n.rle!.h-
ods are based entircly on these ordered observations, or order statistics.

The methods to be presented are applicable to b‘ot.h continuous. and'
disercte variates, but we shall direct our atten"c-lon almost ent.lre]}-
to the continuous ease, merely pointing out olccasmnalljlr the modifica-
tiong that would be required in the case of diserete va,rlate_s. i

16.2. A Basic Distribution. The whole structure_of. distri Etwn_
free mothods rests on a simple property of order statistics: the distri-

bution of the area under the density function between any two ordered
886



§16.2 DISTRIBUTION-FREE METITODS

observations is independent of the form of the density function. Ty
show this, we merely make the probability transformation deseribed
in Sec. 6.1.  The density function for the ordered sample z, ¢, - -
Ts I8 '

nlf{x)f(ze) - - - flx.) (1)

if f(z) is the population density function. The facinr n! arises from
the fact that there are n! permutations f the obscrvations and every
permutation gives rise to the same orderced sample.  The density for
any given permutation is just TIf(x.), so the densiiv for the ordered
sample is obtained by summing this expression over all permabations
of the ;. The variates in {1} arc restricted by the inequafities

O\
— 0 < B < e L g ocococ <, {OC;""’ (2)
If we lct A
w= [ i) = Pl K° )
then in accordance with See. 6.1, the de;l\‘\ig\' function Tor the w s
simply \x\
g(uli g, * - !u'i) = nl 0 <Z‘?'E'l‘}< o <D - D, <D L']:)

which does not depend on f{z). X%

The density function g(uy, a8% |, w,) cnables one to find the dis-
tribution of any set of areasufitler f(2) between puire of ordered obser-
vations. I'or example, suPpose we desire the density Juncetion for the

area under f{x) bet-we;&ii‘;}l and .. This areq, say o, i=
\ .
N\ v\— Flza) — Flzy) = w, — u, 3)

We first integrale out wus, g, * c 0, eer in (L), then make the sub-
stitution u./= e + v and integrate out wy.  Tlius

'S M
4 tn 1121 13
.sﬁ‘(uh Un) f AR [ [ nl s dey - 0 0 b1 (6)
ol 1 '3 193

1

O =il 0 c < <! )
\\: no— !
and the density of ¥ and v is

Bu, v) =nn — et 0 <y < (1 —2) <1 (8

On integrating out u1, we obtain the required density
m) = nln — D2l — &) 0<e<1 (9)

which is a beta density function.
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LOCATION AND DISPERSION £16.3

More generally, the area w between z. and 2, (s > r) under flx)
can readily be shown to have the density function

" o .
s—r—Dlin—s— i A — e 0 <w <l (10)

Also one can obtain a joint density funetion for several such arcas.
The expected value of u; ig

ﬁ}‘l - j;usj;'u:nlugdu1dug s du,

1

n+1

Eus)

It

N
(1
AN )
NS
henee the cxpected area under f(z) between two successive ohserva-
tions i3 "G

i 1 K
E(w) = Eluey) = , 773 \ (12)

Thus, on the average, the n ordered observati,ohk\&ivide the area under
#(z) into n + 1 cqual parts of area 1/(n 471 )heach,

16.3, Location and Dispersion. In the “parametric case we have
used the population mean and st-g,n&ard deviation as measures of
location and dispersion. The digtribution-free methods use other
meagures.  The center of the pbj}uiat.ion is defined to be the median,
say », which is the point $idf divides the area under the frequency
funetion in half. Thus'y"i's\deﬁned by

3 |
NI - [ s = FO ()

wheve f(z) is t 613(3"1151»53, function and F(x} is the cumu_lative dist.,ribl:l-
tion, The ;ﬁgsdmn is often denoped by £.0, 804 & similar notation is
used for ‘o{ha percentage points; thus

™ - 2
RN Fltu) = 15 | )

o \./ .
defincs vhe 15 per cent point, £1s, of the population. )

A a meusure of dispersion one uses the distance bet“-"een t\.\-o per-
eentage points. Thus, one frequently used measure of dispersion 1s

(3)

which ig calied the B0 per cent range, of the interquartile range. But
many other ranges are often used, for example, the 90 per cent range
To0 = £g5 — £gs or the 3314 per cent range ms = & — En

' 387 :
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§16.3 DISTRIBUTION-FREE METIIODS

Point Estimatzon. The population median » is estimated by the
gample median ¥, which is the middle observation if the sample size
is odd or the average of the two middle observations i the sample size
is even. Thus

£ = Tpy1 ifn =2k +1 (i)
= L45(x. + xepn) if n =2k (3)

The sample median # is not ordinarily an unbiased cstirate of » even
when n is odd, for the fact thet E#{2)] = F(») does not imply that
E(#) = ». However the bias is not serious and must approash zero
as the sample size increases.

To estimate percentage points, the z; themselves fur 111-11‘cst1matf‘b
of the 1002/ (n + 1) per cent points. For other v a]uem\)m, May use
linear interpolation. Thus to estimate £., frony duwmple of sizc

= 104, we observe thal ry estimates the 211 potut and g the 3{;
point; henee we use as the estimate N

R
fa“.tz"{—z]{/[l(\}‘j'—ll (6}

\;_.

Given estimates of percentage pO]Ilt‘w, one can obv iously estimate the
various ranges. AN

Confidence Intervals. A cqnﬂﬂbncc interval for » iz casily con-
structed by means of the bimﬁﬁﬁal distribution. The probability that
an observation falls to theleft or right of » is one-half in either case.
The probability that ;ex;actly i observations fall to the leil of v is just

\\ i n 1h# .
Ko i )2 ®
P,
The probability that x., the rth-order statistic, exceeds » is then
' M

el r—1 @
~::\\ Plr, > v) = E (»,:) (%) (8)
"am? ;;imilarly =
S AN g
2 (1)) 0

\ 3
If we now suppose s > 7, add (8) and (9), and subtract both sides
from unity, we have

Pleg, <v <2, = ‘*E (:l) (%)n (10

388
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LOCATION AKT DISPERSION §18.3

which provides a confidence interval for ». "Ordinarily s is taken to be
n — = -+ 1 so that the rth observations in order of mugnitude from the
top and from the botlom are used. Thus for a sample of size 6, two
possible confidence intervals for the median are '

Plry<v <ad =1 — (90— (40 = $da .07 (11)
and

Plos < v <2 = 1= g = 002278 (12)
If one wished to do so, he could approximate a 95 or 90 per cent
confidence interval by using linear interpolation between (11} and {12
but this is rarvely done in practice. One ordinarily restriets hfl?nsélf

to the coulidence levels available with the simple order sta‘gisﬁcs.
If the sumple size is small, onc bas only a few confiflehce levels
available; in particular, when n = 2, there is only ,th}%O per cent
eonfidence interval given by .

X'\\: o
P, <v <a) = 50\ (13}

For moderate sample sizes the binomial suthyin (10) may be computed
directly or found in tables of the incomgletc beta function. Tor Jarge
n one would use the normal approximbtion to the binomial. ~Since
the index 21n (7) is approxima‘nely i’lﬁr’mal with mean #,/2 and standard
deviation +/n/2 for large n/a 05 per cent confidence interval, for
example, is obtained by cw%ﬁjing 1.96 +/n/2 observaticns to the Ieft
and right of the samplelrhedian.

A similar techniqueNs employed to ohtain confidence inter.\-'als. for
percentage points,, GIFE, is the 100p per cent poins of the digtribution,
then the same gaguiment used to obtain (10) shows that

"V a—1

“~.‘\\“P(1‘w < gy < T) = z (f) pi(l — P (14)

Ny i=r
SN

THUsYIOr a sample of size 6, 2 possib
25 per cent point is given by

Ploe < Eas < %9 =-i (i’) (TD (Z)H ~ 78 (15)

1

le confidence interval for the

A 96 per cent upper bound for £z is given by

il N\l .
Pty <ty) = Z(S) (Z) (1) =~ .96 (16}

0
380
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Tesis of Hypotheses, To test the null hypothesis » = 5, against
alternatives » > o, one uses the relation (8), choosing in advance an
integer # so that the probability of a Type I error will have as nearly
as possible the desired value. Thus for a sample of size 6 one can
make the probability of a Type I ervor 74 22 .11 by choosing r = 2,
If after drawing the samph, one finds 2y < v, the null hy pothosm is
aceepted; if 2y > »o, 1t I8 rejected.  In the same fushion two-sided
tests of » = » may be constructed; the two-sided Lesr is obviously
equivalent to eonstructing a confidence interval for v and uepgpting or
rejecting » = »y according as the confidence intervul does gr Wbes not
aover v, Tests on a percentage point £, would he e 11(*<$~0\ut by the
same technique, using probabilities p and (I — p) =10 ADot L4 and 34,

It is now apparcnt that the distribution-free me lkl?n{‘w )L‘bldﬁs heing
extremely general in that they require no d.::mumpilr.m ahout the form
of the distribution function, arc also exted@itinavily simple. No
complex analysis or distribution theory iz nepded: the =imple binomial
provides all' the necessary equipmentZFg¥ calinuition and festing
hypotheses when one is dealing withy a\aii'w'lv popiitaiion.  The only
inconvenience is In the paucity of 510'111{1('411( e levels or conlidence lm els
when the sample size is quite :maﬂ

A word about the discrete case is in order here,  We have assumed
the frequency function wags eontinuous. If it iz dizcreie, then the
equalities obtained in thig section for confidence infervals and tests
need to be replaced l}yﬂ:nequalitics. Thus (10), for example, boeomes

L\ s

SOP@, < v <) 2 N (”_*) (%) (17)
\ TN

The reasent }or the inequality is in the fuct thatl cerlain observations
may be}duphcafred Thus suppose one wishod Lo estimate » for 2
dlscretc distribution using a sample of size G and a 7% per cent con-
_fidente interval given by s and 25. Now and then 1he two smallest
\observatlons zy and zs will be equal so thal the (&s z;) interval i
equivalent to the (zy, ;) interval and hence corresponds to a prob-
ability larger than .78. The same thing may happen ai the upper
limit; 25 and x5 may be equal so that sometimes the (zs, 2;) interval
1s equivalent to the (z., 25) interval; occasionully it can cven be th?
same as the (2., xs) interval and thus correspond to the 97 per cent
rather than the 78 per cent level
16.4. Comparison of Two Populations, A great many distribut.iolk
free methods have been developed for testing whether two populations
390




COMPARISON OF TWO POPULATIONS §16.4

have the same distribution. We shall consider only two of them, and
at the end of this section we shall derive a confidence interval fu’r the
difference between two population medians. F-irst; we shall obtain
a simple result on the distribution of arrangements of two sets of
observaiions from the same population.

Let ¢y, €5, * =+, Ta PE AR ordered sample from a.population with a
density function fz), and let g1, y2, © © | ¥n, De a second ordered
sample frrfm} the same population. Let the two samples be combined
and arranged in order of magnitude; thus, for example, one might haye,

N
Y1, 1, Tay Yo, T, Yy Yoy Yoy Ta 7 7 7 '\",\(1)
. 7\

We wish to find the probability of obtaining a specific sxfangement of
this kind. ’ :

If the &’s arc iransformed to u's by the relat-ion"’g\Z.:%), and the y's
transformed to v's by the same relation, the joilt frequency funetion
of the u's and »'s 18 4D

A\

g(ul; g, - Yag Y1 Ua, “ y 1 1"“2) = nl!n?I (2}
The probability of a given al-ra;ngéﬂent such as (1) is found by inte-
grating (2) over the region defined by

0 < p < g s <o <us< o <1 3)

N\
Le., vy i3 integrated ~f1§n gero to uy, then u from zero to us, ete. Iis
readily seen Lha.t.\t-ﬁe value of the integral is ﬂllﬂ_z!f‘ (ny + ng)l, or simply

; - AN : 71+ M N
! / (11-1 _L ?\])‘ Since there arc exactly ( . n ) arrangements of

1 1 ,
nya's Et-!;l%f 2 4’5, it follows that all arrangements of the z's and y’s are
equallyiikely. :
~Kin Test. We now turn to the question of testing the null‘ hypothe-

\t:is‘\"t'-hat two samples have come from the same popula,tlon. The
observations in the two samples will be denoted by 2’s and y's as above.
The two sets of observations are combined as in (1) and the nulnbe:r o
of vung counted, A Tun is a sequence of lelters of the. same. kmc}
bounded by letters of the other kind. Thus (1} starts with 3 run 0-
one y: then follows a run of two 's, then a ran of‘ one ¥, zrm S0 oln;
six runs are exhibited in (1). It 18 apparent tha,’t if thp t\\ 10 sﬁm}i e11
are from the same population, the o's and g's will ordinarily be we

mised and d will be large. 1f the two populations are widely sepa-
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rated g0 that their ranges de not overlap, d will he only iwo, and, in
general, differences between the two populations will tend to reduce 4.
Thus the two populations may have the same mean or median, hut
if the x population is concentrated while the ¥ population is dlspersed
there will be a long y run on esch end of the combined sample ang
there will thus be a tendeney to reduce d.  The test: then is performed
by observing the total number of runs in the combined sample, accept-
ing the null hypothesis if d is greater than some specified number d,,
or rejecting the null hypothesis it d < dy. Our task now is tp deter
mine the distribution of ¢ under the null hypothesis in order that we

May 3 )C(Eif do fOI' a "iv{:‘n level Of Si{,"niﬁ(ﬁﬂnc(f. ¢\
¥ &L . g
8 '\

byt e « >
We have seen that all of the ( o ) arrangement of n, &'s and
n P !

e y's arc cqually likely under the null hypothesiéd» Tt is necessary
now to count all arrangements with exact lv goains.  Suppese d is
even, say 2k; then there must be & runs of w/shnd % runs of y's. To
get & runs of «'s, the 7y &°s must be div ulod*n\fo L groups, and we wigh
to count all permutations of the & numbe\ in each group.  In short, ©
we wish to count all the ordered. i- pdlfi).lltlhf}ﬂ‘; of 4, with zero parts -
excluded. Thisis Ieadllv done withtglic ald of the generuiing funetion
described in Sce, 2.6 for enumer. ..Ljrmo the ways of gotting a given total
with a set of dice. The reqmrod number is the coefficient of {2 in

(t + o2 +\zs\‘l’ IR (,—‘_E)} &

2O D) (A ;iT\ p (5)
O =0 '

-1 o T -
which i is e ) Similarly there are (f; 11) J-part partitions of
[P . —
ooy exc]udmg zero parts.  Any partition of the »’s may he combined
'}xam partition of the #'s in two w avs to form a sequence like {1);
the first = partition or the first y partition may he put at the beginning
of the scquence. Thus we have found the density for even values of

d;
(m — l) (?Ez — 1)
h(d) = 2 E—1 -1 d = 9 (6)

(ﬂl =+ nq
K3
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and by similar reasoning cne finds for odd values of d:

'(nl — 1) (ﬂ-g - 1) + (m — 1) (ﬂz — 1)
hok 4+ = B AR 1ﬂ _Hf VA Q)
1 M
(")

To test the null hypothesis in question with 4 probability p for the
Type I error, one finds the integer dy so that (as nearly as possible)
. ~— N

3 A =p L8

d=0 A

and rejects the null hypothesis if the observed d does not gxéged do.

The computation involved in (8) can become guite, tedious unless
both 71 and ne are small. The distribution of d bec}a?fles approxi-
mately normal for large samples, and in fact the wpproximation s
usually pood enough for praciical purposes ,j»vl)eh both ny; and na
exceedt 1.  The mean and variance of A(d)dre”

N\ Y

2n1ns W
i = —_—— L 9}
B = T 1 (
2%1’!&2(2-5?;{?3; — 1y — Tg)
2 — ; 1M
Fa (1 A M)A + 12 — 1) (
and if we let .m\m
Ry -+ Tfak%.ﬁ 1 = ha ny = NP (11}
these moments bec@i:tie, for large n, approximately
</
\ B(d) = 2naf (12)
Ov 6% = dna?p? (13)

O ' .
The Ie}rgé;—sample normality of A
fopm{ly to evaluate the factorials in (6},

{(d) iz demonstrated by using Btirling’s
substituting for ¢ in terms of

¢ Hefined by
g = L 2nof (14)
2a8 /1
- and showing that the logarithm of the resulting expression approaches

— log 27 — %%

8% n becomes infinite. We shall omib the details.
393
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one would determine do for testing the null hypothesis at the g3
level, for example, by pulling the right-hanid side of {14} equal 1o
—~1.645 and solving for d.

The run test is sensitive to both differences in ghape and differences
in location between two distributions,  Often, however, in practice,
one does not care about differences in shape; he is concorned only with
location. That is to say, he would like to test merely the null hypothe-
sis that the population medians are equal: », = »o. 11 is not possible
to make such a tést, but the following test of £1{0) = r.0) i scnsitive
primarily to differences in location und very Litile o differences in
shape. O\ _

Median Test. As before, lot there be an ordered gagnple 21, o

—— T AT
¥

¥ rom fi(x) and a sample g1, ¥, - ¢ -, yﬂg.i'g{;in L. Let
21, 2o, * * *, Zmpgne De the ordered combined sampl;;: The test of the
null hypothesis fi(z} = fa(x) = f(z) will consigleii finding the median
Z of the combined sample, then counting theNddinber of A’y say m,
which exceed 2 and the number of y's, saysital which exceed 2. If the
null hypothesis is true, we should expectiziv to be aprroximalely #,/2
and my approximately n,/2. 1t is clpurthal this test will be sensitive
to differences in location between I W2Y and f2(2) but not Lo differences
in their shape. Thus if fi(x) g fu{a) Lave the sume median, we
should expect the null hypothgaf# {0 be accepted ordinariiv even though
their shapes were quite diffcrent.

To make this test, tHendistribution of my and s under the null
hypothesis is requirgd \ et 2, be the ath ohservation in order of mag-
nitude, let m; be t-hsnumbcr of &’s which excee? 2, awd let ms be the
number of ¢’s which exceed z,. The joint densiry function of my, ma,
2z, under t-he’suh hypothesis is

NG

(’ Nt

T Ty P T F G T |

o;"\ ', 5;3"‘3 T e Yy ]Me—mn - e LT iy —weyf 7 il
AN {(?;32) PPl — F <f«)1"'} + ‘(W) FEi = )] }
. [ ?I,?,I ITI {F(za)]m_ g 1[‘[ _ 1(‘.1(2,&)",;5.;- dﬁ'(za)] (} 5)

mel(ng — my —

where the first term takes account of the case jn which z, 1s an x ohser-

vation and the second term of that in whieh z, is a y observation; F (_:r:)

i3 the cumulative form of f(z), and dF () represents J(z.)dz. On

integrating out z, and combining the two resulting terms, one finds
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the frequency function for m; and m, to be, say,

(nl) ('ﬂ.g)
glma, ms) = "(%E':"E)- (16}

it

We observe, on comparing this expression with equation (12.10.17),
that it is just the distribution of the cell frequencies in a 2 X 2 con-
tingeney fuble with all marginal totals fixed when there is independ-
ence. The contingency table is

Ty Ma n + ﬁ.g — . p \' \“.\

- .\

¥4

N ny - '..‘.\\

where {he marginal totals are shown to the right~of*and below the
closed port of the table. If ma -+ % were odd,one would choose
a = (n; -+ no + 1)/2, whereas if the sum wepeseven, one would ehoose
¢ = (n: + n2)/2. Thus the null hypothekiy tnay be tested by using
either the N eriterion given by (12.10.8) or the chi-square eriterion
piven by {12.10.20). If ni + %e WQI‘Q?III.&H, one would use (16) to com-
pute the cxact probabilities instefidh of using the approximate proba-
bility given by the chi-square.distribut.ion with one degree of freedom.
The approximation is fairly good if both #. and 2z exceed 10.

Confidence Intervals, In order to obtain exact confidence i'ntervals
for the difference betwépn the medians of two populations, it is neces-

sary to agsume thablthe distributions differ only in locatiOI}. Letting
L1, it D m a population with median v, and

T o, v, 2AODE & gample fro _ "
¥u gy - Q,;a sample from one with median vs, we assume that the

variatos & _ _
Ny U = W — M and v = Y — P2

. ) ! . ,
h‘l\\{ Yhe same density function, say f(u), with median zerc})l. The
sample of %'z and the sample of '8 ar¢ then two samples from t etsa.trFe
population. Tf one chooses two integers ¥ and s, he may compute the

probability that u, exceeds v. a8 follows:

Plu, > 1) — f ) (ﬂ:) Pl — Floy df o) ) (2)

i=0
[Falit — FEl™ (17)
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5 ()6

18
§=0 (5 + 1) (?%8; i ;u) (8
e (s +1 — ]) ('m + s — 5 — ?ﬁ)
- T As—1d s/
- ié“o (”-L + ?l-z) (19)
g
Similarly O

g 4+ 17— 1\ 1y F ne — s’j\—“s;
¢ s — 1 Ha = NS
Plup < vy = Z - )
i=r

. \ 2
nl —I— H ,) u:‘ (20)
LAY N\

&

/N

If we now suppose r < 5, ¥ > &, and v2 2 wpthen
r 1 .

Plyy —ap <vo— v < Ys = Ty) .xt\\';
= P(;ﬁh}e{‘ vy and e > ) (21
= t‘pr(?{-g— > F"s} — f" .-.:,_‘,_r, < t"s’) (22)

and the left-hand side of this ‘r(‘latlon provides a confidence interval
for vz — »; with a conhdencg Tevel which is caleulable b means of (19}
and (20). The confidenee interval provides a third est of the null
hypothesis that the tis distributions are the sune: the hypothesis
would be re](\f'ted\(‘bhe interval did not include zere.

We shall outlinc'a large-sample approximation which may be used
when », and mboth exceed 10, Since the sum expressed in (19) 18
one when taken over the whole range of 7, we may regard the summand
as a den.iit funet::on for a variate 7 and find the normal approsima-
tion tO-tHat function. The sum may then be approximated by inte-
gf&fl}"g the appr oximating funection. The mean and variance of ¢ are

NN
iy = (23)
fig + 1
s s s +Dre43) | (54 Dny B _S?’ix_}
% -n2+1[ iz tnya o BEL o] @

and their approximate values when n, and ny are large may he found
by letting

R+ ne = n R1 = Hey g = B3 § = yna = gyn (25)
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and keeping only terms involving the highest power of n. The results
are '

.Hﬂ%nw (26)

o7 22 nay — 7 7
5 @0
The large-sample normality of ¢ may be proved in the same manner as
outlined for ¢ in (6). The gum in (19} may then be approximated by
’ Q"

A 1 \
—— g
f— @ '\/27!' e "\("Q@)
where xﬁ\ '
—1 _ AN
A4 = (T —+ %) nay ) (29)

Vnay(l — v)/8 \\

Given s, one would choose 4 to give the desired probability level
{(—1.96, for example, to make the probability x.ﬁ@fr) and solve for r.
The question arises as to how s should be chosen.  Clearly s should
be greater than ns/2 and 7 should be le%:j;hzin #,/2.  One might, for
example, make the two differences equal, but a shorter confidence
interval may be expected by makipgz the differences cqual on ““stand-
ard” seale. The number of . 'phscrvations less than »y is approxi-
mately normally distribu-ted,“wit]ﬁ mean /2 and atandard deviation
/112 similarly the nur};bg,\" of y observations exceeding ve is approxi-
mately normally distr'rt{‘ut’-éd with mean ne/2 and standard deviation
V/ns/2.  We shall then determine s 80 that
A7 () s = (/2 (30)
SRR
If one gubstitutes for ny, ns, and s
suluds for r, then equates the result t

fings

in this relation in terms of (25) and
o the solution of (28) for 7, he

(31)

TSt S e (VB + )

neglecting terms with higher powers of 1/ A/7n; in terms of the original

symbols this becomes
o, AYmYu T (32)
s R TRV ARV
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and from (30)

pa™ ANV

2 2V + o)

In similar fashion one would argue that good choices for ¢ and ¢ in
(22) are given by changing the signs in (32) and (333,

16.5. A Distribution-free Test for One-factor Experiments.* A
factor 18 tested at & levels with 2, observations ui the 7th level; the
observations may be denoted by ay with /=1, 2, - .. . A& and
J=12, - -, n. Thenull hypothesis thut the lnelor has novetfect
will be tested by testing in faet whether all the n = 2y olsprvations
may be regarded us coming from the same population. (Srclinarily in
practice one is not much concerned with whether ilig cl;.;li?listributions
difier in shape; he is primarily concerned swith \\'jig:{!'lez-'ﬁ they diller in
location.  Hence the test we shall consider WillN'e u generalization
of the second Lest given in the preceding secfpuy

Let m; be the number of observations whe sth cell which exceed
the median of the whole set of # obseryations und construct the con-

3

(33)

X

tingency table; A\
% N/
i R
™y ! P N - e o
| W i
i &R i - R
: ol <‘ i i
Top =y e N | de — g o oo
[ - [
1o 2 -
E3) Jm\ My He
| $
4 7 " .

where a = n/2 if n.i&vcn or{n — 1)/2if nixodd. 1t iseasily ghown
by the argume{ﬁyused in the preceding scetinn that the density
function for I{Jj&}j??‘bf s

$

N4 ()
i1 N (1

&
”:’o g(mh My, 7, mk) =
AN (."l-)

43

~

) 3 .
}his is just the ordinary distribution fora 2 X I contingeney table with
all marginal totals fixed when there is independence.  [Tence the null
hypothesis may be tested by means of the \ criterion or the (:hi-f:'QH%re
criterion of Sec. 12.10. The chi-square criterion is ordinarily easier
to usc, and using the present notation, it may he put in the form

= M= 1) (m _ Hia_;)z @

~oaf T

a{n — a) l?_g,‘-
i

*Bections 16.5 through 16.9 are based in purt on unpublished work of George®
W. Brown (zee Preface).
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where we have retained a factor n — 1 in the numerator of the coeffi-
cient instead of replaeing it by n, as is ususlly done, because = is
agsumed large.  The expression (1) has & distribution very accurately
approximated by the chi-square distribution with » — 1 degrees of
freedom vven if n is only of the order of twenty provided all the n; are
gt least five.  Ior smaller values of the #'s one should compute exact
probabilitics from (1).

- To estimate the difference between main effeets of the factor at two
levels, one would use the difference of the cell medians, and a con=\
fidence interval for the difference would be constructed by the methdd

deseribed in the preceding scetion, <\
16.6. Two-factor Experiments, One Observation per CéJJ\. The
observations are denoted by @y with ¢ = 1,2, - - -, r an@\
z? g“
Jon2 e e

The row factor is thus being tested at 7 levclsf@n‘d the column factor
at ¢ levels. The disgtributions of the hav'gmedians

v = v+ & ¥s, (1}

where the median of the numbgrs: o, is zcro as is the median of the §;.
The o; and 8 are identified vwith row and column effects. The dis-
iributions of the a; are agfumned to be identical except for locatilon;
thus the variates =y — g bre all supposed to have the same density,
say f(r). Also the ' Sate assumed to be continuous variates. If one
or both the factous, ﬂa’ve randomly chosen Jevels, we may supposc that
the densily talds“hccount of random interaction eff::—zcts a8 .wcll as
crror eff eets'.\";b‘thcrwise it is necessary to assume the interactions are

— O
ero '\\

We ghill examine the null hypothesis that the row effects, i, are

zeroc Under this hypothesis all the observations in a given column

avE The same disteibution. Tt &; be the median of the observ.atmns
in‘the jth column, and in the two-way table let t}'le ob.servlat_lon Xij
be replaced by a plus sign if it execeds & 0T by a minus sign if it dnesla
not. The 7 X ¢ table then consists of plus.and mjinus signs in PfQ‘L.I'L_’-‘
number if » is even, or with ¢ more minus s1g0s '!‘Jha.n plus signs i ? 1<«
odd. TLet m; be the number of plus signs in the ith Tow. . If there are
in fact no row effects, then we should cxpect the m. to differ from ;}:;2
only by random sampling deviations, but if there arerow effectf,‘:haz
the rows with positive effects would have an excess ‘af plusfsx gl;nk p nq.
those rows with a negative effect would have 2 deﬁmeﬂ}iﬁ}’ ihp :5 nsgal:é
The null hypothesis is therefore tesggd by testing whether the si2

3
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divided evenly in rows. In faet, we may construct a 2 X r pope
tingency table:

’ |
2y sy . | ity | ot

£ o— Mg

where ¢ = r/2if ris even or (v — 13,/2if ris odd. It Lurns out that
the m; do not have the ordinary contingeney-table distrib@llon as
was the case in the preceding scotion. However the di;»,;i;r'{bution of
the m; is such that the large-sample distribution of un :ui'lﬁlogous chi-
square eritcrion has, in fact, the chi-square dist ribiein with 7 - 1
degrees of freedom. 8o this Lable may be testad like an ordinary
contingency table with all marginal totuls fixedd ¢
The distribution of the m; is best exhibileddhwthe form of a generat-
ing funetion; the distribution itself does not hitve « simple closed form.
Suppose we let {1 be associated with a p u‘s}ign in the firet row, £ with
a plus sign in the second row, and @8 Jorth. Let ¢u(f. o, + - - , &)
consist of the sum of all terms thad een be formed by multiplying the
{'s together a at a time. 'l'htl%.ﬁﬁl" example,
balta, b, 3, £1) = LUNF fifg ok Dl fafy + Gdy b s (2)
Each term of ¢a(f,, 3", £) deseribes a possible arvangement of signs
in & given column. *Irarthermore it is easily argued that each arrange-
ment of signs i Goually likely; hence the probubilily of a particular

¥/
O\ r . x
arrangemendis 1 / (a)‘ Now we consider ithe function
'"\l. .

N
\ RGN i (3)

; ."W’. ¢, = IR
~) 7
o~ ()

A little reflection will convince one that there is a one-to-one cor-
respondence between ways of getling terms frag - - - & in t..he
numerator of ¢ and arrangemoents of signs in the r X ¢ table jﬁ-‘thh
give rise to my, ma, *+ -+, m, plus signs in the respeetive rows,  Hence

$=20  Dgmyme - mpyy e

ey e m-
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TWO-FACTOR EXPERIMENTS, ONE OBSERVATION PER CELL $16.6

where ¢ is the density function for the m;. On putting all the §; = 1,
¢ becomes one, since the sum in (1) is then just the sum of the density
over i whole space; this is evident from (3) also, since

¢ﬂ(1: 1! T :1) = (;)’

there being (;) terms in ¢a(ty, s, © © -, ).

It is evident from (4} that ¢ is a fac.torial-moment generating funec-
tion for the m,. Thus,

E(my) = Zt—f: with all & =1 ' \' (5P
e —t \ Dt
VSN ORI L LCTE MR L Yy e BN
a "...‘\\’

7

(r _ ]) | / |
ANY;
- x.\ o
e de—d R %
' ) A\ ‘j
(a) A \/

2 N* (8

. N
7 N

]

which is the same for all m;, and.gimilarly the variances and covariances
of the m; arc found to be &N

o SR 29 | ©
x.‘ calr — a) »y (10)
:~>gi§ = - T-—————'_Z(T — 1) (3 :ll

::\ o _
Taking m, T-(’\[)E‘ishn dependent variate (they are related by Zmi = ca),

the matrixoP variances and covariances for my, Mz, © ¢, Ple— MAY
be inver\t:ﬁ to get
~O L 2 —1) (11}
4 O e - a)
I Gl B Y (i2)
ca(r — )

We shall not demonstrate that the ms are asympt?-;il(i::ggorrllozfnilg
istributed. The simplest proof appeals to & BORTE F 8 @ b uted
central-limis theorem. If variates yu ¥ '~ 7 Y

i i be shown that
with finite variances and covariances, ¥ then it can
401



816.7 DISTRIBUTION-FREE METHODS

the averages g for a large sample of sizc ¢ are approximately normally
distributed with varisnces and covariances v,/c. In the Present
instance, y1 would be defined to be once or zero according as there wag
or was not a plus sign in the first cell of a column, and similurly for the
other y’s. The ¢ columng are then regarded as ¢ obzervalions on the
y;, and the g are then my/c, which by the general theorem must be
usymptotically normal as ¢ becomes lurge.

A more direct proof of normality for large ¢ could he conatructed by
replacing the & in ¢ hy en/Ve (exeept £ = 1), then showing that log ¢

approaches, as ¢ becomes large, the expression N\
r—1 ‘
oA\
vea 1 NI, N
8 5 ;= 88 e\ 1:
Yo s T C (13)
1=1 L5 ~ ",
4 ’¢‘.

{
the exponcnt of ¢ in the moment generating lungi ii'm. of a normal dis-
tribution, as shown by cquation (9.5.4). "Thdytadiatic form of the
lurge-sample normal distribution will have (hdvhisguare distribution
with r — 1 degrees of freedom; the (‘111:.1,(1{:}?\16 fornt is

r—1r—1 p. | N\
2 -- e e
x? = Z E i (-;1;4 o —) (m,- - = (14)
1 1 .": "’ ¥ tF

and it may be reduced to th&expression

.3 <\"_ ca(-}- - a) Ll( (HI; T) (1 ))

N\

The ordinary, €lisquare criterion given by cquaticn (12.10.20), if
applied to thg2 X rtable at the beginning of 1his zeciion, would difer
from (15)*emly in that the numerator of the coefficient of the sum
would bev? instead of »{r — 1), ITere r iz not assuned o be large
so theddifference may he appreciable.
~The null hypothesis that the row effects are zevo may thercfore he
Nghted by the criterion (15), using the ordinary ¢hi-square distribution
unless ¢ 13 small.  For practical purposes the large-sumple distribution
is satisfactory if ¢ is as large as 10, or even if ¢ is only 3 provided re i 20
or more; for smaller values the exacl. probability should be computed
by means of (3).  To test eolumn effects, one would, of course, simply
reverse the roles of rows and columns in the above test. : '
16.7. Two-factor Experiments, Several Observations per. (;e_ll-
We shall suppose that there are = rows, ¢ columns, and & observation®
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TWO-FAUTOR RXPREIMENTS $16.7

per cell. The observations are denoted by g withe = 1,2, - - - | »;
i=1,% ", and k=1,2 -+, h Iiis assumed that the
variates are continuous and have the same distribution except for
loeation; if the population eell medians are »y, then the variates
z — vy all have the same distribution. The »; may be put in the
form

vy = v+ o+ B+ v (1

where he a; have zero median, the 8 have zero median, and the v
have zero medians in every row and column.  If the levels of a factor,
ave randomly chosen, then the effects are random variables and ars
regarded ns baving a zero population median rather than a,&eyd
median themselves. NS ¢

Main Fffects against Interaction. Lo make the test analqgg}gé’to the
test of main effects against interaction in the ordinagrgfanzilysis of
variance, one simply finds the cell medians &; (medianlef the h obser-
vations in the £, § cell) and uses the tests presented\in the preceding
wection on these cell medians. PN

Joint Tests of Main Effects and I nieractions, %y using a procedure
similar Lo that of the preccding scction Jie possible fo construct a
simple test of the hypothesis that a factgr fias no effect whatever, either
in main effects or in interaction effg@s. Thus we shall consider the
null Wypothesis: «; = 0 and vy =\ " Let % represent the median of
all 7k ohservations in the jth column, and let my be the number of
observalions in the 4, f ccj}(\!«'hinh excecd & Consider.ing a specific
column, we have just t{é\ieﬁe—faetor situation discussed in Sec. 5, and
the my; have the dengity '

> -1 @

i

&0

whm;é:,\.; = #h/2 or (vh — 1)/2 whichever is an infeger. The density

fotall the my, is therefore obtained by taking the Pmdu(ft of (22 overJ
from one to e. We need not, however, deal with this d1st11put-1on
expeet in the case of small numbers. T o tes‘r: the null hfpo‘r,lhesw, :::gl
would compute the chi square of equation (5.2} for cach column

add the results to obtain

2
r{rh — 1) T( . E) {(3)
- ag\
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§16.7 DISTRIBYTION-FRER METILODS

which is approximately distributed as ¢hi squave with ey — 13 degrens
of freedom, and the approximation is satisfuctory cnough for most
practical purposes if £ is & or more, or if reh 3 20 or more.

Main Effecls against Deviations. The distribution-free test analo-
gous to the analysis-of-variance test of main cffects against deviations
is {airly simple if interactions are assumed to be zevo.  Referring to
the numbers my; of the paragraph above, let

z My = N (4)

’ A
i.e., n;1s the number of ohservations in the th row which exgeedh their
column medians. ‘There being ¢k ohservations in g 1_‘0\\"in\'1;,\$}10111(1
expect Lthe n; to be roughly ¢A/2 under the null la_\_-'pdt;[}msis‘ The
hypotliesis is tested by means of a chi-square (‘:.1'i1:{21‘1“0(1“;'1@1_10]1 like that
of the preceding section. We shall merely ouydind its derivation.

The 2 X # conlingency table here is: X
"
T s - -nxr‘:\ s
- S S I\
eho—m | cho— e | - - LB — ne rinh —
o [N i
Nl —

but it does not have the ordinagttontingenev-table isiribution.
. oy . ) .
A fuctorial-morment genergtiaiy funetion for the n; is

A\ B G REaH ]
#liy, by, - - - = coefficient. of T x%in -~ < (3)
N\ Ly
O ka
Using this, {1{1@‘{:1\{85 the means, variances, and eovariances of the n
to be 223
\i"\'"
it 71 o
OB = w
NN alr — 11{rh — .
~\J o = Eu’_.}" i) {7)
\/ b — 1)
__ealrh — @) . , (8)
Tiy = ?‘:(T'Tﬁ =7

The inverse of the variance-covariance matrixfors = 1,2, + -+, 7 — 1
18 found to be
it = 2r{rh — 1) _ oy (9)
calrh — a)
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TWO-FACTOR EXPERIMENTS §18.7

and the chi-square eriterion is

_r{rh = 1) 2
= ca(rh — @) & (ﬂs - E:-L) (10)

with v — 1| degrees of freedom.

Interaction.  All the lests deseribed thus far are computationally
quite simple—merely a matter of eounting observations and comput-
ing a chi square. To test the null hypothesis that the v of (1) are
gero, it 1% necessary {irst to remove both row and column main effectsy
by an iterative reduction; then one proceeds with a test similar »o
those already deseribed. : R\,

LetLing 4; be the column medians as before, one removes tHe eolumn
offecls to n first approximation by subtracting the &; fromy'the observa~
tions of the jth column to get a reduced set of obser\féﬁions:

Thn = an — & ’ (i1)
AN
One then finds the row medians & and sub@aats these out to geb

;},Tgk = ﬂ':;rk—" :f‘,: . (12)

If the plus and minus sighs are Jalanced in the columns {they will

obviously be balanced in the xws), the reduction is complete. But

ordinarily the subtraction of (he row medians will upset the halance of

signs in the ecolumns, apd}jt 15 DCCEssary
& of the zf}, and suk{i‘{ic-t' these out to get ‘_

A A mff (1 3)

gt
Thip = g T Hi

to find the column medians

AS

This process)iy” continued until
mediansa (One could, of course,
mediang b the original observations T

A8 the reduction g compleled, one counts the number of plus
Sigih’i\; i, in each ecll, counting the zeros as one-hall plus and gnc—hulf‘

#us. The numbers my and b — ms form a 2 X r X ¢ eontingene
table with 2]l marginal totals fixed, and. the null hypothems maly h'e
tested by the ordinary chi-square criterion for testing mdeponi mul c-
in such a table. This interaction test 18 very nearl?r blft £ n(.n; completely
distribution free. The approximate chi-square criterion 1s

2

o o = (/T8 (14)
x* = m“hz mf]mj(h — mi.m.:l')
F

406

both rows and columns have zoro
start the reduetion with the row
other than the column medians.
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with (r — 1){e — 1} degrees of freedom where
= E Mgy my = Z Mif wm o= E i (15}
i i L7

The expression simplifies somewhal if ;. = ¢h/2 und my = /2, but
this will not always be the case owing to the presence of zerog among
the reduced obscrvations,

All the elements for testing in factorial experiments have beon pre-
sented in this discussion of the two-factor experiment.  T'he methods
earry over directly to more complicated silualions.  The gencral rile
for testing one factor or set of factors assuming the prese nog 19{\ & second
set of factors iz to it the second set of faclors using mvdhmq then
classify the data according to the first sel of factorsgnid’ tost for ffty-
fifty splits between positive and negative de\-iu.l..i:\in.u. m the various
classifications.  All these tests are speeiul (-;L.m’ra":'qj\fwis in the general
linear regression problem which will be deserhtd hrieflv in See. 9.

16.8. Simple Linear Regression. A ¢Owtinuous variate x has 4
density f(x) whose median is of the t'm;mx\“

V= ke ()

where o and 3 are unknown 1);1,1?1.’1%19101’& and s an observable param-
eter. On the hagiz of a s&mﬁb‘le of o ohservations, (., 2], (@s, 23,

y (o, 2,), 1t g deslred to estimate o and 3 or feat hypotheses
regmdmg aand 8. ()

Poind Ebi?.?rz.fz-ﬁzfin.\}}L{p[}osing the paired observalions to be plotted
as n points in the@)z plane, the problem here iy to fit a regression line
of the form \ 4

’\" €I = o —|‘ N (2)

Lo the p’l‘}rted points. If we denote the estinu ates of @ and 8 by & and
i r.'llejt'wo conditions which determine & aned J are

N

\ i Median of (z; — & — 825 = for z < 7 (3)
Median of (2, — & — Bz} = for s > €y

where 7 is the median of the 2. Thus one divides the obsevvations
into two groups, using the median of the 2=, and chooses that [ine
which makes the median of the deviations zero in cach group.  (If it
happens that several 2 values fall at 2, then the < sign in (3) and >
sign in (4) would be replaced by < and > if such a replacement ® -ould
more nearly divide the points into groups of cqual #ize.)
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SIMPLK LINEAR REGRESSION £16.8

In practice, unless the number of observations is quite large, the
gimplest. method of determining the line is to plot the points and use
Lrapsparent Taler 1o locate the line by cye. Yor machine work, the
lollowing ilerative procedure may be used: Find the medians of the
+'s and #'s in each of the two groups. The slope of the line joining
the two points determined by these four medians is a first approxima-
*ion, say 87, to B. Let the deviations of the «; from the line, © = §'z,
be

T =% — p'y (BN
A slope & is fitted to these deviations in the same manner as ahove to
get a eorrection o 8°. The sceond approximation to §is \ \
Bl =g+ ~A®
Now new deviations g,

At & ;

% Lrd
2 =y — B = ) — 8z NS (7)

are corvputed and a slope &' fitted to them. T\Q(f,third'appmximation
to Fis D
ﬁ}'”’ — ﬁ:‘f _l_. 6!:}:’ 3 (8)

and the iteration continues until § is»dg:t“ermined to the degired degree
of accuraey. 'Then & is the medj‘ai}.’df the final set of deviations.

Tests of Mypotheses.  To tesithe null hypothesis, o = agand 8 = 8.,
one divides the points intogwo groups at 2 and tests whether the two
groups ave hoth evenly diwided by the line. Let mq he the Ilumbt‘-_l‘ of
points above the liné f{}i‘ 2 < & and let ms he the number of pmnt;s
ahove the line for@n>> 2. Doth m and . have the binomial distri-
bution with pazgmetor one-half; hence

R T +(;)] ®
07 =5 (m ) (s |
"\

will lga:ve approximately the chi-squs
ofz\fededom, unless n 1s small, in wh1.ch 0486 O
istribution to compute the probability. . N
To test @ = @ only, one would fit o line, x = av + B2, toO the points,

determining # by the condition

-gquare distribution with two degrees
ne would use the exact

Fadls o~ B) = median {z; — @0 — Bz} (10}
MS,-dgl;m {z; — o Bz i
above the fitted line {in both groups com-

Lhe mumber of poits, T /2 under the null

hined) has the binomial distribution with mean 2

hvpothesis, .
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To test 8 = Bo, one would fit a line, z = & + 84, to the pointg
determining & by
& = median (z; — Bu2) (11}

'The points are again divided into two groups on 7 and the numbers
my and my of points above the line in each group counted, These
with (2/2) —gns and (n/2) — ms form a 2 X 2 ('f;uhr‘g(‘ne‘} tahle
with all margins fixed, and (unless 2 is small) the null by pothesis may
be tested by (9), w h]Lh in this case has only one degree of 1mednm\and
in faet, may be put in the form

N

7 AN

16 n\* e
x? == T; (m-f — i:) ™ (12)

Confidence Intervals. To obtain a confidence unm"\ 1] for «, one first
fits a line = Bz to the data by the condition s

 §

A
Mediun (z; ~ Bz} = Iﬂef_'g‘{til\(ﬂig — Bz (13)
wHEE zg}x

NS

If the deviations of the z, from thi,gzlifié arc denoted by 2, 1e., if
-'U: '.:—“'—':'},'{ - ~F_’-1' {14)

then the estimate of « is the'median of the 2 vi, and a e onﬁdon(*r- interval
for o is obtained by apPling the method deseribed for v in Hee. 3 to
the xf, A

The simplest defc¥iption of a confidence interval for B 13 to say that
# I — p confiden@é interval is the set of points 3, which would not be
rejected at thep level of significance by the test deseribed above
Thus on Ifﬁght determine the confidence interval by trial and crror.
An aplﬁ’b’\lmatﬂ method, which may be ordinarily expected to be
qmba aa'mfaotow, 18 to fit the line = & - 82 and rotate it about the
pom,f where it intersects the line 2 = 3. Since the number of puints,

7, " above the Jine and to the left of 2 is approximately normally dis-
tributed with mean 1/4 and variance 7,/106, the limits of the confidence
interval would be obtained by rotating the line until my reached its
p/2 and its 1 — (p/2) levels, The glopes of the line in these two
positions approximate the 1 — p confidence limils of 3.

16.9. General Linear Regression. The (resiment of the more
zencral case i3 o straightforward extension of the methods already
described.  Tet there be & observable parameters 21, 22, * - * , % 20d
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GENERAL LINBEAL REGRESSION §16.9

let the rogression equation be of the form

L
¥ = + E 2y (l}
1
On the hasis of # observations (y; 21, 25, -+ -, &) Wwith
t=12 -+ ,n

it is desired to estimate the «'s or test hypotheses about the o's.
Suppose first that the regression does not involve ay, so that s

merely wish to estimate oy, @, -+ +, oz The & conditions on the
abservations which determine these cstimates are . "‘~,\
'\
Ny
3 k -
Median (3 — ) d&2) = median (g — ), &) 2
#ri @ 1 Zri o Er Kg )

there being % such conditions, one for each falge of r. Thus the
obgervulions gre divided into two groups byxt@mcdian of each of the
k2’3, and the medians of the deviations infeach group of any pair of
groups arc required to be equal. NowMarning to the ease in which a
constunt ap is involved, the conditign 16¢ determining wo is

G0 = medidt(y: — Zéed) (3)
or, what is the same thing{" o
P\ 3
3{&&13’;1’1 (s — @ — Zam) =0 €Y

If we consider afty» one of the relations (2), it is clear that the median
on each side obhé equation must in fact be the median (?f the wh_ole
set of deviatjois, henee must be &. Thus to fit a Tegression function
of the fown (1), one may specify the conditions (2) and (4), or he may
combjrmj\ em into
 (Median (4 — do — S = median (s — & = 2&z) =0 ()
It 5 worth noting that the estimation of @y, ez, * = = & 18 ?ntlrely
independent of wo; one could make any a.ssumpt-ljon he wished about av

without, influencing the estimates of the other o’s. cdonc

To test hypotheses about the o’s or estimate them b}:f o flr'lw

intervals, one would use the procedures described in the prece IEg

scction. Thus to test ay = au, one would fit the other consian’® };

raeans of (5) with & replaced by e and the relation forr = ; \\*011)111(

of course be omitted. One would then test, using a 2 X 2 table,
409
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whether the signs of the deviations were split fifty-fifty below and
above Z1. A confidence interval for @, is the set of values awy whieh
would not be rejected by the test.  To test a set of the o'y, for example,
to test whether the first ¢ of the o’s had the values o; = '

=12 - -

one would fit the other &’s using the lust & — ¢ relations of (3), then
construct ¢ 2 X 2 tahles like thut used in the preceding seetion Lo test g,
adding the individual chi squares to get a eriterion wilh ¢ degraes, of

freedom. A confidence region for the ey, as - - -, @ may bi\on-
structed from those points in the (awm, ww, * © «, o) spatewhich
would not be rejected by the test, O '

The actual fitting of o regression funetion requires ar™Merative com-
putation. The constant term a, is estimated lusi 1’)_1-' cquation (3).
A first approximation « Lo & ix obtained by fimﬁx;l\;_r; the glope of the
line joining the median of {y,. z.) for z.; < Z. andNthe mediun of (i, 2.
for z,; > 2. The o) are then used to compuPeevintions

yo= g — S
™}
which are again fitted 1o the g;.;jﬁl the sume [ashion,  The slopes
obtained are added to the «/§V obtain second wpproximations, o).
The process conlinues untiiihe desired aceurney iz achioved; then ay
is estimated as the medilyof the linal set of deviations,

16.10. Tests of Assobiation. (iven a sample ol # observations from
a bivariate populatioh, (v, #1). (ve, ¥2), © © ©, (. #.). the problem
is to test whetheilé two variates are independently distributed.  We
assume both ¥arfates are continuous so that the probability iz zero
that two ob&givations have the same value.

Co-ntf{ng'&zcy Test. The simplest test that comes to mind for this
131‘0131@.'}8 to test whether u regression line fitted to the points hag zero
HKII;’ The test amounts merely to dividing the n points into f(ﬂ%u‘
grovps by the two lines y = § and & = £ The numbers of points 1
the four quadrants form 2 2 X 2 contingeney table and have the con-
tingeney-table distribution under the null hypothesis.  The chi-square
criterion (with one degree of freedom, since all marginal tolals are fixed)
may therefore be used unless n is small.

Corner Test. The so-called corner test appears to be the best 'tes_’ﬁ
vet developed for the problem al hand. There is no proof that it 38
best, but in the event » and y arc not independently distributed, this
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TESTS OF ASSOCIATION $16.10

test appears most likely to reject © i i

o usge as the contingen};y test]. ¢ the null hypothesis. 1t us simple
. The test is performed as follows: First the observﬁtions are divided
lpto four groups by the medians as in the contingency test (etl l\“ }‘5_“1
lines of Fig. 74). Now we shall arrange to deal always \\tith 11;1 SO- N
numbei" of points.  If n = 2m, the two median ]ihes \\‘{11 nnlt i;lto: ‘9 Itt
any points.  {(In practice they may, because of coarse measur'ex;\;\(l'ltt
U, for example, the horizontal line intersects two points, one ma
fzhoosc one of them arbitrarily and move it slightly up or d;:\'n a;:eorti
ing as a i,i?ssed eoin falls heads or tails; the other would he moved iny
whe opposite direction. A similar procedure would be used for fnur. \
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In case the two
omittediand a new point constructed
OT\it.t‘éﬁ'l’ points which are not medians,
Gvidded 1o the original data in this manner.
shifll deal with an even number of points,
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ered. The upper horizontal dashed line is mo
until one encounters 2 point on &
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similarly, the right one by moving to the left, the lower one by moving
up. Let r; denote the number of points to the left of the left line; #,
denote the number of points above the upper line, cte.  Points in the
upper right and lower left quadrants are counted positive while thoge
in the other two quadrants are counted negative. Tlus in Fig. 74,
rn=—1rs =3 r; =4, r, =4,

The test criterion is

r=rit s+ (1)
Q"
and it is intuitively clear that o large posilive or negutive value of'r i3
evidenee against independence while small values of r arg oxpected
if the null hypothesis is true. We must find the distj‘.ilﬁltion of r
under the null hypothesis in order to determine the critial level for a
desired probability of 4 Type I error. 4,
If @ and g are independently distributed, then a,"l‘.ghldum sample of »
pairs {z, %} is nothing move than a sample of »n 5 sand a sample of ny's
paired at random, If the 2's are ordered \};tbh“:arl the smiallest, &, the
second smallest, and so on, then ihe ﬁammé' of 2 7's may he paired
with the @’s in n! ways corresponding(te¥ihe n! permutations of the
ordered y values, and under the null hgpothesis all of the permutations
are equally likely, Our distribu{i'giﬁ problem therefore 18 simply &
matter of counting the numbgr:’ﬁf permutations of the 2m y values
which give a spicified valuegzef 7 this number divided by (2m)!is the
probability of 7, PAN
Let us suppose for theioment that all four of Py, Ta, Ig, Py ATE pOSILIVE,
and suppose all that’he number of points in the upper right quadrant
is 7; then there wWilPBe m — 7 points in the upper [ell and in the lower
right quadrant@nd J points in the lower left quadrant.  The numbers
72 and r; depen@ only on the m z's grealer than & and the m y's greater
than . JOrFs to be positive, the j ¢ values in the upper right quadrant
must indlide the top r, y's but not the one just below them. The
othe® = 72 ¥'s in this quadrant must therefore be selected from the

h

7N/ T2 — 1 smallest of the m ¢'s greater than §: (his selection ean be

. M o— 1y — | ) ., ) T .
made in ( j QT ) ways. The 7 y's that have been selecied must

now be assoclated with j of the 2's to right of # and among these must
be the fop rs 2's, since 7y is assumed posilive, but nol Zzm—n. Lhe
; 3 . mo— ¥y — ].
other § — ry values of = may therefore be selected in R
ways from the smallest m — r; — 1 values of ¢ to the right of .
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A similar argument shows that there are

(m~—n-—l)(m—rl—1

j— 7 j—n )

seleations of ¥'s and #’s which give positive values of r; and 7, in the
lower loft quadrant.  After all these selections have been made, the
remaining w — i values above § are assigned to the remaining m — j
values of x to Uhe loft of & and the remaining m — 7 4 values Jess than
# are assigned 1o the remaining ¢ values fo the right of & Thesy
values in any quadrant may be permuted at will. Thus there arauy!
permutations of y valucs in the upper right quadrant, {(m —ojﬁp’m;
mutations of ¥ values in the upper left quadrant, and so on. (The lotal
number of » permutations which give § points thg»ﬁpper right

quadrant and the given values of the #'s iz therefore, O
\\.

-111.—~-r1—1) g — 19 — 1 m—rs—l) m4'134—1)
i — i—r i—1 JANT — 1

~SHm =) (m — Nt {2

Tor any other assignment of signg torthe s, the argument is just
the same, and the expression (2),;“"6111(1 be changed only in that the
lower index of the binomial coeffigients would be different for negative
. If we let s. (o = 1, 2, 3.4) represent the numerical value of 7.,
¢ is negative, then the

ie., 55 = 7 if 7o 18 positivgdand s = —Ta if 7q
binomial coefficient C(grga‘_ponding {0 1. 1n {2) 18

m 6 = l)
N/ _ j— %

if 7, is positike; and is
N\

\J m— 8 — L
'."\\ (m - j - Sm)

T,
NG

ugh details now that it s fairly

Af % ie negative. We have given cno : : _
ting function for r1s

af“ﬂ/ to show that the factorial-moment genera
o) = E{r) = Bttty

Ttm PP

2 @m)l

j=0 =i 1 4
L s —1\ . m—5 )t—'] (3)
[Zl(m s )t_-!— szl(m._j—s

j— 8
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and, of course, the probability for a given value of 7 is the coeflicient
of & in (3).

~ When # s small, (3) may be used to tabulate the digtribution of r,
The large-sample distribution of r is not normal. Tt can be shown,
though we shall not do so here, that when n hecomos infinite, the
generating function (3) becomes simply

£

. ¢(£) _ (Z (511 ps + E 2--{8+1J{—.3)'1 (l)

=1 s=1

The limiting distribution has been tabulated, and it i found t}m\t the
5 per cent limits on 7 are £11 and the 1 per cont limits arel 214 ie.,
e \
P(—11 <7 < 11) 22 95 A {5)
80 that if r equals or exceeds 11, the hypothesis @b independence is
rejected at the 5 per cent level of significance. N\

The small-sample distribution of r has hept 1abulated, and it is
found that the limiting 5 and 1 per cent Iels are quile satisfactory
if the sample size is ten or more. Phins, though the distribution
problem iz rather troublesome, the application of 1he test is quite
simple. N

16.11. Power Functions. Ngr:gehera.]]y aceepled theory of power
funetions for distribution-freetests has vet heen developed, and we
shall therefore confine ourzdiscussion to u few brict remarks.

The great difficulty injebtaining a power funection ariscs from the
fact that the funetiondl¥orm of the distribution js not specified.  Sup-
pose, for example, tﬁ one wishes to test the null hvpothesis that the
median v of g pupﬁiation has the value » = 0.  What is the power of
the test of Sed 8 at » = 17 Tt is apparent that it depends entirely
on the form ©f the distribution. Tf the distribution happens 1o be
normal A0 = 0.1, the power will be very high at » = 1 even for
small gamples, but if ¢ = 13, the power will be quite low for small _
H‘;L\mpies It is thus appavent that a power funection in the ordinary
!sqn‘sé does not exist even for a specificd family of distributions; the
actual distribution is needoed.

To circumvent this difficulty, it has been suggested that the power
be eomputed as a funetion of F(») instead of as a function of »; F(z)
is the cumulative distribution of the population. The null hypothesis
mentioned above takes the form F(0) = 14, and the alternatives are
0= F{0 < 1 exeepting #(0) = 34, Thus the null hypothesis siates
that » = 015 the median of the population while the altematives state
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that = = & is some other percentage point of the population.  This
power funciion for the test of the medinn is then identical with 1he
ordinary power function of the test that p = 44 for a binomial popula-
tion. It is clear that this device is applicable to many of the tests
digeussed in this chapter.

16.12. Notes and References. Many writers have contributed to
the development of distribution-free techniques of analysis. A large
share of the eredit for these developments belongs to 8, 8, Wilks, who
was among the first to realize the importance and potentialitics of this
field and who encouraged many of his students to work in it, A papbt
which gives a comprehensive survey of all the developments up t0 the

- date of its publication and a rather complete bibliography-s =78,
Wilks, “Order statistics,” Bulletin of the American Muthematical
Society, Vol. 34 (1948), pp. 6750. ﬁ‘ p
16.13 Problems o

1. Find the density function for u = F(z.);\Where z, is the il
ordered observation of a sample of size n fFom a population with
eumulative digtribution F(z). \ x\

2. Derive the density function givenimequation (2.10) by integral-
ing (2.4). _ .

3. Derive (2.10) by a geometxital argument, considering the & axis
divided into five intcrvals as illpstrated,  The sample is regarded 2=
coming from s mult-inomiiﬁ population with five categories having

s \ ':’?: :f:
N Ay Az X

probabilities F(y. 2 Ay,/2), J)dy, Fle — 82/2) — Fly + 29/2 f_(z)la_z,
L F(z + AZ’ZQ’); and in such a way that r — 1 ?bservat.u.ms izfl.l l-n.
the first ea{€g6ry, one in the second, and so on. The density of & 1s
fla) Wihh%;nuia.t-ive Plx).

4, Te the geometrical method of Pro
fUﬁf:ti\On of u, the area between &4 and z,

Satnd «;, with g < 7 < 8 <L
5. Sl:‘ow thaqt the expected value of the larger of a sample of two

observalions from a normal population with zero mc(jin gnslal,f;;‘n
variance is 1/+/w, and hence that for the general normal pop

the expected value is s + (o/ /). o ‘
6. % (x, y) is an observation from & bivariate normal population

i - thai the
with zero means, unit variances, and correlation p, show 1
“ ¥

expected value of the larger of @ T:;[ yis /(L — p}/m

b. 3 to find the joint density
and », the arca between
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7. Derive equation (4.7).
8. Verify equations (4.9) and (4.10).
9. Bhow that ¢ defined by equation (4.14} is approximately nor-
mally distributed for lurge n.

10. Verify cquations (4.23) and (4.24),

11. Verify equation (4.31).

12. Derive the disiribulion given in (5.1),

13. Verily (6.9) and (6.10), and show that (6.11) and (8.12} do in

fact definc the inverse matrix. N\

14. Provide the details of the argument for normadity whidh uses
(6.13). <O

15. Verify (6.15). \.

18. Show that (7.5) is a generaling function for :Lhes {actorial mo-
ments of the ;. K1s

A"
17. Verify equations (7.6) through (7.10). \

18. Show that the distribution of # of o%’, 10 12 symmetric about
r = 0, hence that E(r) = 0,

19, Show that the limiling varianeg @f\: s 2

20. Check the statemoent at the’en“d of See. 10 by tabulating the
cumulative distribution of the nuferical value of v for « = 10, If s
is the numerical value, 1t is fouﬁd" that P(s > 10) = 0642,

P(s' 11} = .0436

Pls > 14) = 0127, ]3(?5‘,} 15) = .0005. The corrcsponding values
for n infinile arc 0583y 10342, .0082, .0050.
21. Complete thaderivation of (10.3),

22, Tf =1, 2 &7 | 2. is an ordered sample from & population with
cumulative distribution Fiz), find the density for
7\
N\ w = [Fza) — Flag)]
R\ [Fx.) — Flen)]

x ~23\ The active life z, in hours, of radicactive atoms has the density
\(1/3)3—“” To estimate ¢ for a p<.Lrt1(..ul ar kind of atom, u sample of 7
atoms is put under obscrvalion, but the experiment is (o stop when the
rth atom has expired; i.e., it is intended not to wait until all the atoms
have ceased activity, but only until » of them {r chosen in advance)
have. The data consist then of r measurements vy, 2, © © - , & and
n — r measurcments known only to exceed z,. Find the maximum-
likelihood estimate of 8, and show that il has a chi-square distribution.
Note that the likelihood contains the factor [1 — F(z)}*~" where Ff ()
i¢ the cumulative distribution.
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24. Referring to Prob. 23, must one start with newly activated
atoms, or ig it all right to starf with atoms that have already been
active for various lengths of time (and are still active)?

26, 1f z is uniformly distributed between ¢ — 14 and ¢ + 14, find
the density for the median £ for samples of size 2k + 1.

26. Referring to Prob. 25, find the density for ¢ = (21 + 75,.)/2.
Is z or & the better estimator of 8?7

27. Show that the sample median is & consistent estimator of the

population median, N\
28. We have seen that the sample mean for a distribution jibh

infinite variance (like the Cauchy distribution) does not noomsahlv
converge in any sense toward the center of the distribution as (e sam-
ple size iIncreases.  Does the sample median converge to thes populatwn
median in such cases? " g'
- 29. If a population has density function "’\
7) = Wz 280
0 e L E0

find the maximum-likelihood estimate o 9 for samples of size n.

30. A common measure of association for two variates z and y is the
rank correlation, or Spearman’s coirsla,fmn The = values are ranked
and the observations replaced .bVothen" ranks; similarly the y observa-
tions are replaced by theg vanks. Thus for samples of size n one

might have: O

7

<

x[]. 2| 8 !
r
|

s ! | ——

H
{ P74 13
2 Vi

Using Th\é% paired ranks, the ordinary correlation is computed
E(X X)(Y -—Y_) 1 GZd?

w—n

.»\:"'f'w 8=
") VX - X3 - T

where the capital letters represent the ranks, and di = Xi— s

Verify that the given relation is true.
[X-om‘:iz'? = n{n + 1){2n + 1)/6]
1

g of Prob. 30 is independent of the

| . 1t ] of
31. Show that the distribution ovided that they are inde-

form of the distributions of z al;;l.r Y, pPr
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pendently distributed, hence that S is a distribution-iree criterion for
testing the null hypothesis of no association.

32. Show that the mean and variance of 8 under the hypothesis oi
independence are zero and 1/(n — 1).  To do this, show that S may
he put in the form ’

S =2 [Q_ ~n(n JIJ

w— n
where Q = Y, {veplacing N, by 7}, and observe ihat the cucﬂi(}ie(?.\of
I in {\A
1

o0 =, 1 \ i f“) K\“
! . ¢
i=1 = i '\ 4
\\
is & factorial-moment generating function for ( g

33. Apply some of the distribution-free Tjeed odg to seta of data to
he found in problems of Chaps. 13 and 1\1‘\\"'

AN
.
-
&N
o0
R \ v
s\’g 3
N\
AN
v\
£ ;\ )
NS/
O
. N\
V./
.{\
D
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DESCRIPTION OF TABLES

L. Ordinales of the Normal Densily Function.  This tabie gives values
of

a N\
f@) = — e
\/ T ’,\«\.
for values of = between zero and four at intervals of 0 OT‘ 0! course
one uses the fact that f{—x) = f(r) for negative vu IIQH‘Qf @
II. Cumulative Normal Distribution. This tal :ul,m‘
£ 1 \V
Fiz) = — ¢~
_[_. “ ‘\/2?’? x'\\"
for values of x between zero and 3.5 at iu‘f{u\ .11~ of 0.01.  For negative
values of z, one uses the relation F(w«:) 1= Fia)., Values of z

eorrezponding Lo s few round valuc« Of F are given separately beneath
the main table.

IIL. Cumulative Chi- square™ ﬁumbufzon Thiz table gives values
of u corresponding to a f(‘\"\‘sclnctvd values of F{u) where

F}\l f a2 e dw

2t — 2)721

for n, the numl}er‘of degrees of freedom, equal to 1,2, - - -, 80, For
l.mfer values\6f n, a normal approximation is quite flumah‘ The
quantltv\ u — /2n — 1 is nearly normally distvibuted with zero
mean zmd unit varisznce. ‘Thus Ua, the a point of the distribution,
IE{X b,e ‘computed by

= 14(x. + /20 — 1)2

where i, is the « point of the cumulative normal distribution. Asan
Mustration, we may compute the .05 value of » for « = 30 degrees of
frecdom:
wgs = 15(L615 + +/50)°
= 43.5

which is in error by less than 1 per cent.
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1V, Cumulative ** Student's” Distribution. This table gives values
of f corresponding to a few selected values of

(n — 1)l
i H
F) = 2 iz
o (1 =N (1 +F Gt
_““’2_ - T ‘E

with n = 1, 2, + + + , 30, 40, 60, 120, . Since the density is sym:
metrie in ¢, it follows that F(—#) = 1 — F(f). One should not intels
polate linearly between degrees of frecdom but on the reciprocal Ofthe
degrees of freedom, if good accuraey in the last digit iz desgiredi\\MAE an
ilfustration, we shall compute the .975 value for 40 degrees of Ireedom.
The values for 30 and 60 are 2.042 and 2.000. Using/the reciprocals
of =, the interpolated value is AN\

4 17 )
2.042 — f&-—;}—“ (2,042 — 2.000)= 2021
750 — ré0 M\
which is the correct value. InterpO.l'aj’iflnﬁ’liﬂe&ﬂ}’s one would have

obtained 2.028. ~:~’:"
V. Cwmulative F Distributiono\This table gives values of F' corre-
sponding to five values of

P4

+:"’x\— 2 2
F(??’L. 3 *E'?) t m’mﬂnn!zxmﬂ (n _|_ mr)“"“+") 2 dx

N N2 _
i) = j; (m -—_2>, (i__?)r
¢ .\ / T2 ’ 2 .
:t\u'
for selecﬁ\\&\x;émlues of m and n; m is the number of degrees of frr:.r‘.dnm
in the suserator of F, and n is the number of degrees of frecdom in the
den&'s;ﬁhator of F. 'The table also provides values corresponding tr{
(F> 10, .05, 025, .01, and .005 because Fi_o for m and n degrees 01‘
fedom is the reciprocal of Fle for 7 and m degrees of freedom. Thus
for G = .05 with 3 and 6 degrees, oné finds

%

12

1
Fos3,6) = mm 8.94

als of m and n as in Table 1V

One should interpolate on the Teciproe

for good accuracy.
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TABLES

TA_B F ¥ : -
e IV, CuMurarve “Srrpest’s” DistkRieuTion®

Ft) = [s (n; 1)! dr

n—2 P
L

'
\n\ 75 90 .05 .975 99 905 | L9085
i 1.000 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 636.61t
2 816 | 1.886 | 2.920 | 4.303 | ©6.965 g . 323 bg? ' Efln;
3 765 | 16381 2.358 | 3.1821 4.5411 584 | 12.041
4 7411 1.533 | 2.132 | 2776 3.747 | 4.604 8.610
5 727 | 1,476 | 2015 | 2571 3.365 | 4.032 | O(BEY
& 718 | 1440 | 1.043 [ 2447 8143 3.707 (p.959
7 71T | 1ah| 1805 | 2365 | 2.998 | 3.499\.75.405
8 06 | 10307 | 1.860| 27306 | 2.806 | 8.355% 5.04t
9 w02 | 1,383 | 1.823 2.262 | 2.821 | 37850 | 4.78
10 ‘700 | 1372 | 1.812% 2.228 | 2.764 L 83M69 | 4.587
11 697 | 1.863 | 1.796 | 2.201 | 2.TEN" 3.706 | 4437
i2 605 | 1.356 1 1.782 | 2.179 | ;zsgm 3.055 | 4.318
13 694 | 1.330 ) L.771| 2.160 J{ave50 | 3.012 | 4.221
i se2 | 1,345 1 1.761 | 2.145J\ 2624 | 2.977 4.140
(5 ‘o1 | 1841 | 1.758 | 2.8 2.602| 2.947| 4.073
16 690 | 1.387 | 1.746 |42.120 | 2.583 | 2.921 | 4.0l5
17 630 | 17333 | 1.740{NZi110 | 2.567 | 2.808 | 3.965
18 oes | 1330 | 1738 2.101 | 2.552| 2.878 | 5.U22
19 688 | 1,328 | 149’ 2.093| 2.530 | 2.861 | 3.8%3
20 687 | 1,825 | 125 | 2.086 ] 2.528 | 2.845. 380
21 s%6 | 1.328\“1.721| 20801 2.818) 2.8 3.819
22 686 | am_y| 1.717) 2.074| 2.508 2.819 3.792
55 1 ess | TWmlo| 1.714] 2.069 | 2.500) 2.807 ) 3700
2¢ 685 NI 318 | 1.711 | 2.064 | 2.4924 2.297 3.745
25 B84yN/1.316 | 1.708 2060 | 2.485 ) 2.787 3.725
AS
26 | 1315 1706 | 2086 | 2,479 2779 3.707
a7 ~ M6si | 1.814] 1.708 | 2.062| 2.473 2.77L | 3.690
28 \J\) .683 | 1.318; L.70L 2.048 | 2.467 | 2.7631 3.672
20 7 (683 | 1.311| 1.699 | 2.049 2 462 | 2.7561 3650
30 683 | 1.310 | 1.667 | 2.042| 2.457 2.750 | 3.646
o0l esi | raes| 1ess| gomlozaems) 27040 200
™\ . . v
\ 360 679 | 1206 | 1.671| 2.000 2.390 | 2.660 | gggg
120 orr | 10289 | 1.658 | 1.980 | 2.858 26171 8.3
= e74 | 1,282 | 1.646| 1.960 2326 | 2.576 | 3.291
I

# This table is abridged from $he * Siatistical Tables” of B. Al Fishlnr and _ank Yf:tes Dubl_l?llll:d
by Oliver & Boyd, Léd., Edinbargh and London, 1858, Itishere published with the kind permission
of Lhe anthors and their publishers.
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INDEX

A

Analvsis, of covariance, 350, 363
adjusterd means, 356
of varianee, 318
(See clse Components of varianer
grd Distribution-free tests)
Greco-Latin squares, 341
Latin zquares, 339
in linear rogression, 318
mixed models, 348
onc-laetor axperiments, 323, 364
randomized blocks, 329
three-factor experiments, 337, 346
two-faclor cxperiments, 328, 334,

242, 345
Average outgoing quality, 384 .
Average sample size in sequential testij:‘; ¥
372, 379 Ry
B e\
AN

s J
Beta, distribution, 115 %N\
Blas, 132, 140, 255 A
Binomial dis t-ributinil'; 54
confidenee Iingitg for p, 233
culnulat.i\fﬂ'fbr‘ﬁl, 235
nnrmal{@f-()x imation, 139
Bivariagi\urmal distribution, 165
momgilt generating funciion for, 166

N

\ 3
Canchy distribution, 117, 216
Central lmit theorem, 136
Chi-sguare distribution, 199
Chi-square tests, 271
contingeney tables, 276, 280, 281
distribution-frec methods, 885, 398
402, 405
goodness-of-fit, 270
Combinations, 10, 12

C

J

W

429

Combinatorial generating functions, 1%
Components of variance, 342
mized model, 348
one-factor cxperiments, 364
three-factor experiments, 346 4
two-facior experinients, 34% 81b,
Conditional distributions, 50082, 83
bivariaic normal, 168 % .~
_eontinuous, 83 ”‘( 3
discrete, 50, 52 ¢
multivarizbcdormal, 181
Conditivnal probability, 23, 26, 32, 50
ConfidengeNntervals, 220, 222
differenee between means, 267
geﬁ(;}m method for, 224
{abge sample, 235
mean of a normal population, 224
p of binomial population, 233
range of rectangular population, 241
regression cocfficients, 295, 30
varianee of normal population, 226
varisnce ratio, 243
{See also Distribution-free contidenen
intervals)
Confidence Tegions, 223
large sample, 237
for mean and variance, 227
for regression cosflicients, 206
Congistency of an estimate, 140
Contingency tables, 273
tests for independence in, 276, 281,
287, 288
Continuous distributions, G5, 68
Control chart, 362
Correlation, 103, 167, 189
distribution of estimator, 314
multiple, 191, 314
pertial, 190 :
Spearman’s rank, 417
Covarianee, 103, 167, 189
analysis of, 330, 263
Critical region, 247

N\



WX

Cumulants, 105, 123
Cumulative distributions, 76, 81
Curve, regression, J 69

operating-characteristic of, 376

Curve fitting, method of least sqoares

for, 309
method of momenls vs.
likelihood, 161

maximium

D

Degrees of freedom, 200, 205, 206
Densily functions, 44, 46, 81
Difference boetween means, confidence

Hmits for, 267
distribution of, 267
tests of, 263

Digerete distribulions, 44, 47
Diserimination, problem of, 200
Distribution-free  confidence intervals,

Distribution-frec mothods, 385 o)

Distribut,

differenee between medians, 345
median of, 388
pereentage points, 384

Distributions, Cauchy, i

regression coefficicnts, 408 o)

estimate of medians, 388 N
estimafc of pereentage pointsy 388
estimate of regression éouflicients,

406, 409 AN
for factorial cxpcr{s@’cx 308, 388,
402

general lincar pefrdssion, 408

large samplgh 38‘5 393, 308, 414

simple 1egm§smn 406

ﬁh:‘i‘rof’ tests, assoeiation, 410,
41

co,mor lest, 410

"'Qquahfy ()f distributions, 391, 394

N

quality of medians, 394

interaction, 405

median, 360

one-factor experiments, 398
pereentage points, 390
regression coefficients, 407, 4109
run test, 391

two-iactor experiments, 304, 402

Distributions, 44, 47, 81

hetn, 115
hinomial, 54
bivariate normal, 165

L7
chi-square, 199
conlinuous, 65, 65
cumudntive, 76, 81
discrede, 11, 47, 50,
F, 204
gamma, 112
Gram-Charlicr, 118
hypergeaniciric, 61
linear funetion of
218

rrultinomial, 5%
multivarinte, 47, T4 ,'\:\’
multivariate norngs W7
normal, 108 gt
Pegrson, 118 (""‘;
Poisson, o‘). :
s'lmple 12‘8

“Studet’®,” 206

!, zos\d

L& m 107
ranee ratio, 2010

(See also Sumpling Jigtributions)

nZ

normal variales,

N

T

Frror, Type [, 244

Tvpe 11, 217

Estimation, of parameters, 147

Lixpacted v
Experiments, des

efficiency of, F40, 350
maxirmurm likeliheod, 154
method of moments, 161

unhiased, 1-12
salues, U1

Fodistribution, 204

Fartorial monments,

100

Filueial probability, 222
Finite populations, sampling frem, 130,

Forms, quadralic,
Punctions, density,

430

146

197

44, 81
dizfribution, 81
likclihood, 141

moment generating, 100
power, 248, 369
regression, 1490, 201



INDEX

G

(3amina distribution, 112
Goodness-of-fit test, 270

Gram-Charlier sories, 118
Greco-Latin sguares, 341

H

Hermite polynomials, 119
Tlomaogeneity of variances, test of, 269
Homoszewlasticity, 324
Hypotheses, composite, 266

finenr, 305

null, 244

simple, 256

{See ulxo Tests of hypotheses)

I

Independence, funclional, 49, 50

in cortingeney tables, 278

in probability sense, 34, 50, 85

of sample mean and variance, 201
Tnspection, sampling, 375
Interaetion, in analysizs of variance,

335, 330, 343, 549, 405
In contingeney tables, 275 2z

J ¢ & 9
Joint disivibution, 75 )
Joint. inoments, 1024, &

:o\‘,.’
:'\::‘L

Largs: fsa.mp,h"} 136
vonhi deﬁgﬁe limits irom, 235
cgmfidonce rogions from, 237
iglgibution of estimators, 208
of likelihood ratio, 259
of mean, 136
Latin sguares, 339 -
Law of lurge numbers, 138
Lc&sf. squares, 309
I :il_t:elih{:aocl-ratio tests; 257
large-sminple distribution for, 259
Linear functions of normal variates, dis-
tribution of, 218
Linear regression, 291

M

Marginal distributions, 50, 82
continious, 82
diserete, 50

Marginal probability, 23, 24

Matrices, 170
algchrs of, 171
inverse of, 172, 175
varianee-covariance, 176

Maximum likelihood, principle of, 152,

153 '

Maximumlikelihood estimators, 152,

154 2 AN
large-sample distribution of, 208, °
propertics of, 158 A

Mean, confidence limits f;;:]‘, v}
distribution of, 136, 25¢)
population, 98 _« NN
sample, 130
tests of, 259,263

Median, 94{367

MendeliaG Inberitance, 41, 42, 286, 287

Momch&,g?:nemting function, 100
Qfm’",,chi-squa.re distribution, 200

5:‘3’ai:t0rial, 102

N for gamma distribution, 115

ad

for normal distribution, 112, 166, 184
for Poisson distribution, 101
for several variates, 103
Moinept problem, 103
Momenty, 93
estimators of, 132, 160
factorial, 100
joint, 102
population, 93
sample, 130
Aultinomial distribution, 58
Multiple correlation, 191
Multivariate digtributions, 47, 74
Multivariate normal distribution, 177
estimators for paramelers in, 186
marginal and conditional  distribu-
tiony for, 181
moment generating funeti

N

on for, 1 w4

Konparametrie methods, 385 .
{See also Distribution-free et heulsi

Normal distribution, 108

431
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Normal digtribution, bivariate, 165
conditional forms, 168, 181
distribution, of sample mean, 198

of sample variance, 204
independence of sample mean and
variance, 201
marginal forms, 168, 181

moment gencraling funciion for, 112,

166, 184
multivariate, 177
regression funclions for, 169, 184
role of, 142
Null hypothesis, 245

O

Operating-characterisiic eurve, 376
Order statisties, 385

QOrihogonal polynomials, 313
Orthogonal tests, 321

1)

Parameter space, 265
Parameters, 55
Partial correlation, 100
Partitions, of numbers, 10 .
of suns of squares, 314, 324, 331, 335
Pearson’s chi-square tnstsg‘.‘\‘{’? 1, 250
Pearson’s curves, 118, ()
Permutalions, 10, 11
Poizson disiributiofi\59
Populations, 12607
Power, of the $ept, 248
functiop.{)[; test, 253, 369
Predicth@,@dﬁtcrvul, 207, 304
Princifle of maximum likelihood, 152,
ks
~Hrgbability, 8
¢ conditional, 23, 26, 32
empirical, 36
fiducial, 222
laws of, 27
marginal, 23, 24
Probubility density function, 44, 81

~
£
X N
W™

<

':’ &
ad
>

Q

Quadratic forms, 177
Quality control, 361, 362

k

Random sampling, 126, 12§
Randomization, 317
Randomized blocks, 329
Range, interquartile, 387
LRegression, 289, 406, 408

cocfficient, 205

curve, 169
_ funetion, 100, 201

linear, 201, 108

multiple, 301 O

normal, 201, 307 Vo
vartanee about, 190, € \".\
Runy, 301 . \,,\
N
2 .\ 1M
m’\&

SBample Jg6,)
distribytions, 128, 102
méan,”130

sngifents, 130

A Nehndom, 126-128
Wampling distributions for, differenee of

Lwo means, 218, 266
likelihood ratio, 230
maxinnun likeliheod catimators, 212
mean of large sumples, 136
of samples from: binomial popula-
tion, 206
of sumples from normal population,
198
of samples Trom Poisson popula-
tion, 206
order statisiics, 386
ratio of sanple varianees, 204
gur of syuares, 169
varignee of o sample, 203
Bampling ingpretion, 370
double, 377
sequentinl, 3¥7
single, 375
Begueniial 1ests, 360
for hinomial, 378
fundamental identity for, 384
for mean of mormal population,
380, 333
power functions for, 369, 383
sainple size in, 372

374,
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4 v
mean of normal populatiogny 259
null hypotheses, 245 £\

one-sided, 262 Qs _ ances, 2(_59 ix. 176
968 Variance-covarianee matrix, 1

- - - V 4 \
ratio of \-':-l,rmnt;?,“?ﬁ ?
sequential, 3664, Varlate, 46, 65
£ )

Significance level, 247 Tests of hypotheses, two-sided, 262
Btandard deviation, 95 varisnee of normal population, 267
Statistical inference, 3, 124 (:Sea alse Distribution-fres methods)
Statistical testy (see Tests of hypothe- Threefactor experiments, 337, 339
ses) analysis of varianec, 337
Stirling’s formula, 16 components of variance, 346
agtudent’s” ¢ disteibution, 206, 218 © Transformations, 107, 192
Sufficient cstimators, 151 Truncated normal distribution, 243
Sum of squsrcs, distribution of, 199 Two-Tactor experiments, 320
pariition of, 319, 324, 331, 385 analysis, of covariance, 350
of variance, 334
T components of variance, 342 O
’ distribution-free analysis, 399, 4024
Type I and 1T errors, 246 ¢(\A
¢ distribution, 208, 217, 218 _ O
Tehobyshelt’s inequality, 135 U AN y
Test, unbisacd, 255 ) o\ 3
uniformiy most powerful, 253 Unbigsed estimators, ] 290"
Teste of hypotheses, 245 Tnbiased test, 236 )
additivity of means, 335, 345 © Uniform dis_t.ribution, 167
distribmtion-Tree  (sce  Distribution- Thniformly m,a@\powerful test, 253
free tests) \ v
equality-ol-means, 263 AN\ v
goudness-of-fit, 270 W W
homaogeneity of variances, 268, 269 Viriarice, 94
indeperidence in contingency {abls, 4 analysis of, 318
273 . “:’;‘ S distribution of sample, 203
large-sample, 257 . % estimate of, 156
likelihood-ratio, 257 O of linear function, 183,
linearity, 321 ) about regression function, 190

of sample mean, 133 .
test of homogencity of several varl-
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